Predominating a Vertex in the Connected Domination Game

被引:0
|
作者
Csilla Bujtás
Vesna Iršič
Sandi Klavžar
机构
[1] University of Ljubljana,Faculty of Mathematics and Physics
[2] Institute of Mathematics,Faculty of Natural Sciences and Mathematics
[3] Physics and Mechanics,Faculty of Information Technology
[4] University of Maribor,Department of Mathematics
[5] University of Pannonia,undefined
[6] Simon Fraser University,undefined
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Domination game; Connected domination game; Continuation Principle; Vertex predomination; 05C57; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
The connected domination game is played just as the domination game, with an additional requirement that at each stage of the game the vertices played induce a connected subgraph. The number of moves in a D-game (an S-game, resp.) on a graph G when both players play optimally is denoted by γcg(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G)$$\end{document} (γcg′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}'(G)$$\end{document}, resp.). Connected Game Continuation Principle is established as a substitute for the classical Continuation Principle which does not hold for the connected domination game. Let G|x denote the graph G together with a declaration that the vertex x is already dominated. The first main result asserts that if G is a graph with γcg(G)≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G) \ge 3$$\end{document} and x∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in V(G)$$\end{document}, then γcg(G|x)≤2γcg(G)-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G|x) \le 2 \gamma _\mathrm{cg}(G) - 3$$\end{document} and the bound is sharp. The second main theorem states that if G is a graph with n(G)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n(G) \ge 2$$\end{document} and x∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in V(G)$$\end{document}, then γcg(G|x)≥12γcg(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G|x) \ge \left\lceil \frac{1}{2} \gamma _\mathrm{cg}(G) \right\rceil$$\end{document} and the bound is sharp. Graphs G and their vertices x for which γcg′(G|x)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}'(G|x) = \infty$$\end{document} holds are also characterized.
引用
收藏
相关论文
共 50 条
  • [21] Effect of predomination and vertex removal on the game total domination number of a graph
    Irsic, Vesna
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 216 - 225
  • [22] An upper bound on the domination number of n-vertex connected cubic graphs
    Kostochka, A. V.
    Stodolsky, B. Y.
    DISCRETE MATHEMATICS, 2009, 309 (05) : 1142 - 1162
  • [23] Restrained Weakly Connected 2-Domination in the Vertex and Edge Coronas of Graphs
    Militante, Mae P.
    Eballe, Rolito G.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2023, 14 (02): : 915 - 924
  • [24] The outer-connected vertex edge domination number in Cartesian product graphs
    Akwu, A. D.
    Oyewumi, O.
    Ajayi, D. O. A.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (05): : 1275 - 1287
  • [25] Similarities and Differences Between the Vertex Cover Number and the Weakly Connected Domination Number of a Graph
    Lemanska, Magdalena
    Alberto Rodriguez-Velazquez, Juan
    Trujillo-Rasua, Rolando
    FUNDAMENTA INFORMATICAE, 2017, 152 (03) : 273 - 287
  • [26] The edge-vertex domination and weighted edge-vertex domination problem
    Peng Li
    Xinyi Xue
    Xingli Zhou
    Journal of Combinatorial Optimization, 2025, 49 (2)
  • [27] ON A VARIANT OF VERTEX EDGE DOMINATION
    Raju, S. V. Siva Rama
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2023, 41 (04): : 741 - 752
  • [28] Vertex domination in dynamic networks
    Fujita, Satoshi
    WALCOM: ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2008, 4921 : 1 - 12
  • [29] VERTEX DOMINATION CRITICAL GRAPHS
    BRIGHAM, RC
    CHINN, PZ
    DUTTON, RD
    NETWORKS, 1988, 18 (03) : 173 - 179
  • [30] Vertex-Edge Domination
    Lewis, Jason
    Hedetniemi, Stephen T.
    Haynes, Teresa W.
    Fricke, Gerd H.
    UTILITAS MATHEMATICA, 2010, 81 : 193 - 213