Effect of predomination and vertex removal on the game total domination number of a graph

被引:12
|
作者
Irsic, Vesna [1 ,2 ]
机构
[1] Inst Math Phys & Mech, Ljubljana, Slovenia
[2] Univ Ljubljana, Fac Math & Phys, Ljubljana, Slovenia
关键词
Total domination game; Game total domination number; Critical graphs;
D O I
10.1016/j.dam.2018.09.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The game total domination number, gamma(tg), was introduced by Henning et al. in 2015. In this paper we study the effect of vertex predomination on the game total domination number. We prove that gamma(tg) (G vertical bar v) >= gamma(tg) (G) - 2 holds for all vertices v of a graph G and present infinite families attaining the equality. To achieve this, some new variations of the total domination game are introduced. The effect of vertex removal is also studied. We show that gamma(tg)(G) <= gamma(tg)(G - v) + 4 and gamma(tg)' (G) <= gamma(tg)(G - v) + 4. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:216 / 225
页数:10
相关论文
共 50 条
  • [1] Effect of vertex-removal on game total domination numbers
    Charoensitthichai, Karnchana
    Worawannotai, Chalermpong
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (07)
  • [2] Game total domination subdivision number of a graph
    Amjadi, J.
    Karami, H.
    Sheikholeslami, S. M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2015, 7 (03)
  • [3] Effect of vertex deletion on the weak Roman domination number of a graph
    Pushpam, P. Roushini Leely
    Kamalam, M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 204 - 212
  • [4] Domination game: Effect of edge- and vertex-removal
    Bresar, Bostjan
    Dorbec, Paul
    Klavzar, Sandi
    Kosmrlj, Gasper
    DISCRETE MATHEMATICS, 2014, 330 : 1 - 10
  • [5] On the Game Total Domination Number
    Bujtas, Csilla
    GRAPHS AND COMBINATORICS, 2018, 34 (03) : 415 - 425
  • [6] On the Game Total Domination Number
    Csilla Bujtás
    Graphs and Combinatorics, 2018, 34 : 415 - 425
  • [7] p - vertex dominating graph and p - vertex domination number
    Nallasivan, L.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2014, 35 (02): : 167 - 175
  • [8] Game domination subdivision number of a graph
    Favaron, O.
    Karami, H.
    Sheikholeslami, S. M.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 30 (01) : 109 - 119
  • [9] Roman game domination number of a graph
    Bahremandpour, A.
    Sheikholeslami, S. M.
    Volkmann, L.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (02) : 713 - 725
  • [10] Roman game domination number of a graph
    A. Bahremandpour
    S. M. Sheikholeslami
    L. Volkmann
    Journal of Combinatorial Optimization, 2017, 33 : 713 - 725