Predominating a Vertex in the Connected Domination Game

被引:0
|
作者
Csilla Bujtás
Vesna Iršič
Sandi Klavžar
机构
[1] University of Ljubljana,Faculty of Mathematics and Physics
[2] Institute of Mathematics,Faculty of Natural Sciences and Mathematics
[3] Physics and Mechanics,Faculty of Information Technology
[4] University of Maribor,Department of Mathematics
[5] University of Pannonia,undefined
[6] Simon Fraser University,undefined
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Domination game; Connected domination game; Continuation Principle; Vertex predomination; 05C57; 05C69;
D O I
暂无
中图分类号
学科分类号
摘要
The connected domination game is played just as the domination game, with an additional requirement that at each stage of the game the vertices played induce a connected subgraph. The number of moves in a D-game (an S-game, resp.) on a graph G when both players play optimally is denoted by γcg(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G)$$\end{document} (γcg′(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}'(G)$$\end{document}, resp.). Connected Game Continuation Principle is established as a substitute for the classical Continuation Principle which does not hold for the connected domination game. Let G|x denote the graph G together with a declaration that the vertex x is already dominated. The first main result asserts that if G is a graph with γcg(G)≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G) \ge 3$$\end{document} and x∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in V(G)$$\end{document}, then γcg(G|x)≤2γcg(G)-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G|x) \le 2 \gamma _\mathrm{cg}(G) - 3$$\end{document} and the bound is sharp. The second main theorem states that if G is a graph with n(G)≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n(G) \ge 2$$\end{document} and x∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in V(G)$$\end{document}, then γcg(G|x)≥12γcg(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}(G|x) \ge \left\lceil \frac{1}{2} \gamma _\mathrm{cg}(G) \right\rceil$$\end{document} and the bound is sharp. Graphs G and their vertices x for which γcg′(G|x)=∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _\mathrm{cg}'(G|x) = \infty$$\end{document} holds are also characterized.
引用
收藏
相关论文
共 50 条
  • [31] Vertex-removal in α-domination
    Rad, Nader Jafari
    Volkmann, Lutz
    FILOMAT, 2012, 26 (06) : 1257 - 1262
  • [32] PLITHOGENIC VERTEX DOMINATION NUMBER
    Bharathi, T.
    Leo, S.
    Mohan, Jeba Sherlin
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2024, 42 (03): : 625 - 634
  • [33] On graphs with equal domination and connected domination numbers
    Arumugam, S
    Joseph, JP
    DISCRETE MATHEMATICS, 1999, 206 (1-3) : 45 - 49
  • [34] EDGE-VERTEX DOMINATION AND TOTAL EDGE DOMINATION IN TREES
    Kumar, H. Naresh
    Venkatakrishnan, Y. B.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 : 172 - 177
  • [35] Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
    Bermudo, Sergio
    Dettlaff, Magda
    Lemanska, Magdalena
    DISCRETE APPLIED MATHEMATICS, 2021, 304 : 153 - 163
  • [36] Some variants of perfect graphs related to the matching number, the vertex cover and the weakly connected domination number
    Bermudo, Sergio
    Dettlaff, Magda
    Lemańska, Magdalena
    Discrete Applied Mathematics, 2021, 304 : 153 - 163
  • [37] p - vertex dominating graph and p - vertex domination number
    Nallasivan, L.
    JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2014, 35 (02): : 167 - 175
  • [38] DOMINATING VERTEX COVERS: THE VERTEX-EDGE DOMINATION PROBLEM
    Klostermeyer, William F.
    Messinger, Margaret Ellen
    Yeo, Anders
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 123 - 132
  • [39] Indicated domination game
    Bresar, Bostjan
    Bujtas, Csilla
    Irsic, Vesna
    Rall, Douglas F.
    Tuza, Zsolt
    DISCRETE MATHEMATICS, 2024, 347 (09)
  • [40] On the p-domination, the total domination and the connected domination numbers of graphs
    Chellali, Mustapha
    Favaron, Odile
    Hansberg, Adriana
    Volkmann, Lutz
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2010, 73 : 65 - 75