Mean curvature flow with surgery of mean convex surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document}

被引:0
|
作者
Simon Brendle
Gerhard Huisken
机构
[1] Stanford University,Department of Mathematics
[2] Universität Tübingen,Mathematisches Institut
关键词
D O I
10.1007/s00222-015-0599-3
中图分类号
学科分类号
摘要
We define a notion of mean curvature flow with surgery for two-dimensional surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} with positive mean curvature. Our construction relies on the earlier work of Huisken and Sinestrari in the higher dimensional case. One of the main ingredients in the proof is a new estimate for the inscribed radius established by the first author (Invent Math, 2015).
引用
收藏
页码:615 / 654
页数:39
相关论文
共 50 条