Dual relations between line congruences in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} and surfaces in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document}

被引:0
|
作者
Marcos Craizer
Ronaldo Garcia
机构
[1] PUC-Rio,Departamento de Matemática
[2] Instituto de Matemática e Estatística- UFG,undefined
关键词
Curvature Lines; Asymptotic Lines; Ridge Curves; Subparabolic Curves; Flat Ridge Curves; Loewner’s Conjecture; 53A15; 53A05;
D O I
10.1007/s40687-024-00445-y
中图分类号
学科分类号
摘要
There is a natural duality between line congruences in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^3$$\end{document} and surfaces in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^4$$\end{document} that sends principal lines into asymptotic lines. The same correspondence takes the discriminant curve of a line congruence into the parabolic curve of the dual surface. Moreover, it takes the ridge curves to the flat ridge curves, while the subparabolic curves of a line congruence are taken to certain curves on the surface that we call flat subparabolic curves. In this paper, we discuss these relations and describe the generic behavior of the subparabolic curves at the discriminant curve of the line congruence, or equivalently, the parabolic curve of the dual surface. We also discuss Loewner’s conjectures under the duality viewpoint.
引用
收藏
相关论文
共 50 条