Some Geometric Properties of Nonparametric μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-Surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pmb {{\mathbb {R}}}^3$$\end{document}

被引:0
|
作者
Michael Bildhauer
Martin Fuchs
机构
[1] Saarland University,
来源
The Journal of Geometric Analysis | 2022年 / 32卷 / 4期
关键词
Generalized minimal surfaces; -Ellipticity; Nonparametric surfaces; Variational problems from geometry; 49Q05; 53A10; 53C42; 58E12;
D O I
10.1007/s12220-021-00819-6
中图分类号
学科分类号
摘要
Smooth solutions of the equation div{g′(|∇u|)|∇u|∇u}=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\text {div}}\, \Bigg \{ \frac{g'\big (|\nabla u|\big )}{|\nabla u|} \nabla u \Bigg \} = 0 \end{aligned}$$\end{document}are considered generating nonparametric μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-surfaces in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^3$$\end{document}, whenever g is a function of linear growth satisfying in addition ∫0∞sg′′(s)ds<∞.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \int _0^\infty s g''(s) \mathrm{d}s < \infty . \end{aligned}$$\end{document}Particular examples are μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document}-elliptic energy densities g with exponent μ>2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu > 2$$\end{document} (see Bildhauer and Fuchs in Rend Mat Appl 22(7):249–274, 2003) and the minimal surfaces belong to the class of 3-surfaces. Generalizing the minimal surface case we prove the closedness of a suitable differential form N^∧dX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hat{N}}\wedge \mathrm{d}X$$\end{document}. As a corollary we find an asymptotic conformal parametrization generated by this differential form.
引用
收藏
相关论文
共 50 条