The harmonic mean curvature flow of nonconvex surfaces in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}^3}$$\end{document}

被引:0
|
作者
Panagiota Daskalopoulos
Natasa Sesum
机构
[1] Columbia University,Department of Mathematics
[2] University of Pennsylvania,Department of Mathematics
关键词
53C44;
D O I
10.1007/s00526-009-0258-x
中图分类号
学科分类号
摘要
We consider a compact star-shaped mean convex hypersurface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Sigma^2\subset \mathbb{R}^3}$$\end{document}. We prove that in some cases the flow exists until it shrinks to a point. We also prove that in the case of a surface of revolution which is star-shaped and mean convex, a smooth solution always exists up to some finite time T < ∞ at which the flow shrinks to a point asymptotically spherically.
引用
收藏
页码:187 / 215
页数:28
相关论文
共 50 条