Dynamics of Nonlinear Time Fractional Equations in Shallow Water Waves

被引:2
|
作者
Khater, Mostafa M. A. [1 ,2 ]
机构
[1] Xuzhou Med Univ, Sch Med Informat & Engn, 209 Tongshan Rd, Xuzhou 221004, Jiangsu, Peoples R China
[2] Obour High Inst Engn & Technol, Dept Basic Sci, Cairo 11828, Egypt
关键词
Nonlinear time fractional equations; Conformable fractional derivative; Analytical technique; B-spline schemes;
D O I
10.1007/s10773-024-05634-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates the modified nonlinear time fractional Harry Dym equation, incorporating the conformable fractional derivative. Functioning as a mathematical framework for examining nonlinear phenomena in shallow water waves, particularly solitons, this model elucidates the intricate effects of dispersion and nonlinear steepening on wave dynamics. Employing a blend of analytical and numerical methodologies, the research aims to decipher the physical implications of the equation and its interconnectedness with other nonlinear evolution equations. The model delineates the evolution of a nonlinear wave in 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} dimensions (one spatial dimension x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and time t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}). The proposed methodology encompasses the G ' G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G'}{G},\, \frac{1}{G}\right) $$\end{document} expansion method, an analytical technique, alongside three numerical schemes utilizing B-spline methods. These methodologies facilitate the exploration of the equation's behavior and enable precise computations of its solutions. The principal findings underscore the effective application of the proposed methodologies in resolving the modified nonlinear time fractional Harry Dym equation, furnishing valuable insights into its dynamics and significantly contributing to its physical interpretation. The significance of these discoveries lies in their contribution to the broader comprehension of nonlinear evolution equations and their pertinence across various scientific and engineering domains. This study provides novel insights into the modified nonlinear time fractional Harry Dym equation through a combined analytical and numerical approach. It advances the field of nonlinear dynamics and carries implications for analyzing analogous nonlinear evolution equations. These findings deepen our understanding of the equation's physical interpretation and lay the groundwork for future explorations in related domains.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Stochastic modelling of nonlinear waves in shallow water
    Int Research Cent for Computational, Hydrodynamics , Horsholm, Denmark
    Proc Coastal Eng Conf, (126-139):
  • [42] QUASI-LINEAR EQUATIONS OF DYNAMICS OF INTERNAL SOLITARY WAVES IN MULTILAYER SHALLOW WATER
    V. Yu. Liapidevskii
    A. A. Chesnokov
    V. E. Ermishina
    Journal of Applied Mechanics and Technical Physics, 2021, 62 : 552 - 562
  • [43] Nonlinear Shallow Water Theories for Coastal Waves
    Eric Barthélemy
    Surveys in Geophysics, 2004, 25 : 315 - 337
  • [44] Nonlinear shallow water theories for coastal waves
    Barthélemy, E
    SURVEYS IN GEOPHYSICS, 2004, 25 (3-4) : 315 - 337
  • [45] Stochastic modelling of nonlinear waves in shallow water
    Kofoed-Hansen, H
    Rasmussen, JH
    COASTAL ENGINEERING 1998, VOLS 1-3, 1999, : 126 - 139
  • [46] Effect of currents on nonlinear waves in shallow water
    Kumar, Arun
    Hayatdavoodi, Masoud
    COASTAL ENGINEERING, 2023, 181
  • [47] Weakly nonlinear shallow water magnetohydrodynamic waves
    London, Steven D.
    GEOPHYSICAL AND ASTROPHYSICAL FLUID DYNAMICS, 2014, 108 (03): : 323 - 332
  • [48] NONLINEAR FOURIER ANALYSIS FOR SHALLOW WATER WAVES
    Osborne, Alfred R.
    PROCEEDINGS OF ASME 2021 40TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING (OMAE2021), VOL 2, 2021,
  • [49] Nonlinear Internal Waves in Multilayer Shallow Water
    V. Yu. Liapidevskii
    M. V. Turbin
    F. F. Khrapchenkov
    V. F. Kukarin
    Journal of Applied Mechanics and Technical Physics, 2020, 61 : 45 - 53
  • [50] QUASI-LINEAR EQUATIONS OF DYNAMICS OF INTERNAL SOLITARY WAVES IN MULTILAYER SHALLOW WATER
    Liapidevskii, V. Yu
    Chesnokov, A. A.
    Ermishina, V. E.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2021, 62 (04) : 552 - 562