Dynamics of Nonlinear Time Fractional Equations in Shallow Water Waves

被引:2
|
作者
Khater, Mostafa M. A. [1 ,2 ]
机构
[1] Xuzhou Med Univ, Sch Med Informat & Engn, 209 Tongshan Rd, Xuzhou 221004, Jiangsu, Peoples R China
[2] Obour High Inst Engn & Technol, Dept Basic Sci, Cairo 11828, Egypt
关键词
Nonlinear time fractional equations; Conformable fractional derivative; Analytical technique; B-spline schemes;
D O I
10.1007/s10773-024-05634-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates the modified nonlinear time fractional Harry Dym equation, incorporating the conformable fractional derivative. Functioning as a mathematical framework for examining nonlinear phenomena in shallow water waves, particularly solitons, this model elucidates the intricate effects of dispersion and nonlinear steepening on wave dynamics. Employing a blend of analytical and numerical methodologies, the research aims to decipher the physical implications of the equation and its interconnectedness with other nonlinear evolution equations. The model delineates the evolution of a nonlinear wave in 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} dimensions (one spatial dimension x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and time t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}). The proposed methodology encompasses the G ' G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G'}{G},\, \frac{1}{G}\right) $$\end{document} expansion method, an analytical technique, alongside three numerical schemes utilizing B-spline methods. These methodologies facilitate the exploration of the equation's behavior and enable precise computations of its solutions. The principal findings underscore the effective application of the proposed methodologies in resolving the modified nonlinear time fractional Harry Dym equation, furnishing valuable insights into its dynamics and significantly contributing to its physical interpretation. The significance of these discoveries lies in their contribution to the broader comprehension of nonlinear evolution equations and their pertinence across various scientific and engineering domains. This study provides novel insights into the modified nonlinear time fractional Harry Dym equation through a combined analytical and numerical approach. It advances the field of nonlinear dynamics and carries implications for analyzing analogous nonlinear evolution equations. These findings deepen our understanding of the equation's physical interpretation and lay the groundwork for future explorations in related domains.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Long time dynamics of layered solutions to the shallow water equations
    Strani, Marta
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 765 - 777
  • [22] Explicit exact solutions for nonlinear approximate equations with long waves in shallow water
    Yan, Zhenya
    Zhang, Hongqing
    Wuli Xuebao/Acta Physica Sinica, 1999, 48 (11): : 1962 - 1968
  • [23] Explicit exact solutions for nonlinear approximate equations with long waves in shallow water
    Yan, ZY
    Zhang, HQ
    ACTA PHYSICA SINICA, 1999, 48 (11) : 1962 - 1968
  • [24] Numerical investigation of Rossby waves for nonlinear shallow-water equations on the sphere
    Benard, Pierre
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2019, 145 (721) : 1461 - 1473
  • [25] Dissipation of nonlinear shallow water waves
    Edwards, KL
    Kaihatu, JM
    Veeramony, J
    COASTAL ENGINEERING 2004, VOLS 1-4, 2005, : 467 - 476
  • [26] Nonlinear periodic waves in shallow water
    Shermenev, A
    SYMBOLIC AND NUMERICAL SCIENTIFIC COMPUTATION, 2003, 2630 : 375 - 386
  • [27] Nonlinear spectra of shallow water waves
    Giovanangeli, J. -P.
    Kharif, C.
    Raj, N.
    Stepanyants, Y.
    2013 OCEANS - SAN DIEGO, 2013,
  • [28] DYNAMICS OF TWO-LAYERED SHALLOW WATER WAVES WITH COUPLED KdV EQUATIONS
    Triki, Houria
    Jovanoski, Zlatko
    Biswas, Anjan
    ROMANIAN REPORTS IN PHYSICS, 2014, 66 (02) : 251 - 261
  • [29] A Numerical Study for the Solution of Time Fractional Nonlinear Shallow Water Equation in Oceans
    Kumar, Sunil
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2013, 68 (8-9): : 547 - 553
  • [30] New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves
    Ray, S. Saha
    Sahoo, S.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2017, 132 (01):