Dynamics of Nonlinear Time Fractional Equations in Shallow Water Waves

被引:2
|
作者
Khater, Mostafa M. A. [1 ,2 ]
机构
[1] Xuzhou Med Univ, Sch Med Informat & Engn, 209 Tongshan Rd, Xuzhou 221004, Jiangsu, Peoples R China
[2] Obour High Inst Engn & Technol, Dept Basic Sci, Cairo 11828, Egypt
关键词
Nonlinear time fractional equations; Conformable fractional derivative; Analytical technique; B-spline schemes;
D O I
10.1007/s10773-024-05634-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates the modified nonlinear time fractional Harry Dym equation, incorporating the conformable fractional derivative. Functioning as a mathematical framework for examining nonlinear phenomena in shallow water waves, particularly solitons, this model elucidates the intricate effects of dispersion and nonlinear steepening on wave dynamics. Employing a blend of analytical and numerical methodologies, the research aims to decipher the physical implications of the equation and its interconnectedness with other nonlinear evolution equations. The model delineates the evolution of a nonlinear wave in 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} dimensions (one spatial dimension x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and time t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}). The proposed methodology encompasses the G ' G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G'}{G},\, \frac{1}{G}\right) $$\end{document} expansion method, an analytical technique, alongside three numerical schemes utilizing B-spline methods. These methodologies facilitate the exploration of the equation's behavior and enable precise computations of its solutions. The principal findings underscore the effective application of the proposed methodologies in resolving the modified nonlinear time fractional Harry Dym equation, furnishing valuable insights into its dynamics and significantly contributing to its physical interpretation. The significance of these discoveries lies in their contribution to the broader comprehension of nonlinear evolution equations and their pertinence across various scientific and engineering domains. This study provides novel insights into the modified nonlinear time fractional Harry Dym equation through a combined analytical and numerical approach. It advances the field of nonlinear dynamics and carries implications for analyzing analogous nonlinear evolution equations. These findings deepen our understanding of the equation's physical interpretation and lay the groundwork for future explorations in related domains.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Analytical study of soliton dynamics in the realm of fractional extended shallow water wave equations
    Ali, Rashid
    Barak, Shoaib
    Altalbe, Ali
    PHYSICA SCRIPTA, 2024, 99 (06)
  • [32] New exact solutions of time fractional modified Kawahara equations in modelling surface tension in shallow-water and capillary gravity water waves
    S. Saha Ray
    S. Sahoo
    The European Physical Journal Plus, 132
  • [33] On a class of Boussinesq equations for shallow water waves
    Daripa, P
    Dash, RK
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 2, PROCEEDINGS, 2003, 2668 : 764 - 773
  • [34] Shallow water equations for equatorial tsunami waves
    Geyer, Anna
    Quirchmayr, Ronald
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 376 (2111):
  • [35] SIMPLIFIED NONLINEAR EQUATIONS OF SHALLOW SHELL DYNAMICS
    ANDRIANOV, IV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1984, (02): : 28 - 29
  • [36] Dynamics of optical solitons of nonlinear fractional models: a comprehensive analysis of space–time fractional equations
    M. Ali Asaduzzaman
    Optical and Quantum Electronics, 56
  • [37] Analytical Scheme for Time Fractional Kawahara and Modified Kawahara Problems in Shallow Water Waves
    Nadeem, Muhammad
    Khan, Asad
    Javeed, Muhammad Awais
    Yubin, Zhong
    FRACTAL AND FRACTIONAL, 2024, 8 (07)
  • [38] Nonlinear wave dynamics in shallow water
    Madsen, PA
    Banijamali, B
    Sorensen, OR
    Schaffer, HA
    PHYSICA SCRIPTA, 1996, T67 : 86 - 89
  • [39] DEFORMATION OF NONLINEAR SHALLOW WATER WAVES.
    Nagashima, Hideki
    Scientific Papers of the Institute of Physical and Chemical Research (Japan), 1977, 71 (02): : 13 - 44
  • [40] Nonlinear Internal Waves in Multilayer Shallow Water
    Liapidevskii, V. Yu
    Turbin, M., V
    Khrapchenkov, F. F.
    Kukarin, V. F.
    JOURNAL OF APPLIED MECHANICS AND TECHNICAL PHYSICS, 2020, 61 (01) : 45 - 53