Dynamics of Nonlinear Time Fractional Equations in Shallow Water Waves

被引:2
|
作者
Khater, Mostafa M. A. [1 ,2 ]
机构
[1] Xuzhou Med Univ, Sch Med Informat & Engn, 209 Tongshan Rd, Xuzhou 221004, Jiangsu, Peoples R China
[2] Obour High Inst Engn & Technol, Dept Basic Sci, Cairo 11828, Egypt
关键词
Nonlinear time fractional equations; Conformable fractional derivative; Analytical technique; B-spline schemes;
D O I
10.1007/s10773-024-05634-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This study investigates the modified nonlinear time fractional Harry Dym equation, incorporating the conformable fractional derivative. Functioning as a mathematical framework for examining nonlinear phenomena in shallow water waves, particularly solitons, this model elucidates the intricate effects of dispersion and nonlinear steepening on wave dynamics. Employing a blend of analytical and numerical methodologies, the research aims to decipher the physical implications of the equation and its interconnectedness with other nonlinear evolution equations. The model delineates the evolution of a nonlinear wave in 1+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1+1$$\end{document} dimensions (one spatial dimension x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x$$\end{document} and time t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}). The proposed methodology encompasses the G ' G,1G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( \frac{G'}{G},\, \frac{1}{G}\right) $$\end{document} expansion method, an analytical technique, alongside three numerical schemes utilizing B-spline methods. These methodologies facilitate the exploration of the equation's behavior and enable precise computations of its solutions. The principal findings underscore the effective application of the proposed methodologies in resolving the modified nonlinear time fractional Harry Dym equation, furnishing valuable insights into its dynamics and significantly contributing to its physical interpretation. The significance of these discoveries lies in their contribution to the broader comprehension of nonlinear evolution equations and their pertinence across various scientific and engineering domains. This study provides novel insights into the modified nonlinear time fractional Harry Dym equation through a combined analytical and numerical approach. It advances the field of nonlinear dynamics and carries implications for analyzing analogous nonlinear evolution equations. These findings deepen our understanding of the equation's physical interpretation and lay the groundwork for future explorations in related domains.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Dynamics of nonlinear Alfven waves in the shallow water magnetohydrodynamic equations
    Magill, Martin
    Coutino, Aaron
    Storer, Benjamin A.
    Stastna, Marek
    Poulin, Francis J.
    PHYSICAL REVIEW FLUIDS, 2019, 4 (05)
  • [2] Equations for nonlinear waves on shallow water
    A. Yu. Yakimov
    Fluid Dynamics, 2012, 47 : 789 - 792
  • [3] Equations for nonlinear waves on shallow water
    Yakimov, A. Yu.
    FLUID DYNAMICS, 2012, 47 (06) : 789 - 792
  • [4] Abundant fractional solitons to the coupled nonlinear Schrodinger equations arising in shallow water waves
    Raza, N.
    Rafiq, M. H.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (18):
  • [5] Nonlinear shallow water waves: A fractional order approach
    Arshad, Sarmad
    Sohail, Ayesha
    Maqbool, Khadija
    ALEXANDRIA ENGINEERING JOURNAL, 2016, 55 (01) : 525 - 532
  • [6] Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
    Mohammad Mirzazadeh
    Mehmet Ekici
    Abdullah Sonmezoglu
    Sami Ortakaya
    Mostafa Eslami
    Anjan Biswas
    The European Physical Journal Plus, 131
  • [7] Soliton solutions to a few fractional nonlinear evolution equations in shallow water wave dynamics
    Mirzazadeh, Mohammad
    Ekici, Mehmet
    Sonmezoglu, Abdullah
    Ortakaya, Sami
    Eslami, Mostafa
    Biswas, Anjan
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (05):
  • [8] Dynamics of Shallow Water Waves with Various Boussinesq Equations
    Kumar, H.
    Malik, A.
    Gautam, M. Singh
    Chand, F.
    ACTA PHYSICA POLONICA A, 2017, 131 (02) : 275 - 282
  • [9] Exploring solutions of nonlinear Rossby waves in shallow water equations
    Bagchi, B
    Venkatesan, C
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1996, 65 (08) : 2717 - 2721