Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions

被引:0
|
作者
Oliver Braun
Fan Chung
Ron Graham
机构
[1] Trier University of Applied Sciences,
[2] Environmental Campus Birkenfeld,undefined
[3] University of California,undefined
来源
OR Spectrum | 2016年 / 38卷
关键词
Scheduling; Worst-case analysis; Time restrictions ; LPT (longest processing time first) algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following scheduling problem. We are given a set S of jobs which are to be scheduled sequentially on a single processor. Each job has an associated processing time which is required for its processing. Given a particular permutation of the jobs in S, the jobs are processed in that order with each job started as soon as possible, subject only to the following constraint: For a fixed integer B≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \ge 2$$\end{document}, no unit time interval [x,x+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x, x+1)$$\end{document} is allowed to intersect more than B jobs for any real x. There are several real world situations for which this restriction is natural. For example, suppose in addition to the jobs being executed sequentially on a single main processor, each job also requires the use of one of B identical subprocessors during its execution. Each time a job is completed, the subprocessor it was using requires one unit of time to reset itself. In this way, it is never possible for more than B jobs to be worked on during any unit interval. In Braun et al. (J Sched 17: 399–403, 2014a) it is shown that this problem is NP-hard when the value B is variable and a classical worst-case analysis of List Scheduling for this situation has been carried out. We prove a tighter bound for List Scheduling for B≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ge 3$$\end{document} and we analyze the worst-case behavior of the makespan τLPT(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mathrm{LPT}(S)$$\end{document} of LPT (longest processing time first) schedules (where we rearrange the set S of jobs into non-increasing order) in relation to the makespan τo(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _o(S)$$\end{document} of optimal schedules. We show that LPT ordered jobs can be processed within a factor of 2-2/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-2/B$$\end{document} of the optimum (plus 1) and that this factor is best possible.
引用
收藏
页码:531 / 540
页数:9
相关论文
共 50 条
  • [41] New Directions in Worst-Case Execution Time Analysis
    Bate, Iain
    Kazakov, Dimitar
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 3545 - 3552
  • [42] WORST-CASE EXECUTION TIME ANALYSIS ON MODERN PROCESSORS
    NILSEN, KD
    RYGG, B
    SIGPLAN NOTICES, 1995, 30 (11): : 20 - 30
  • [43] Segment Abstraction for Worst-Case Execution Time Analysis
    Cerny, Pavol
    Henzinger, Thomas A.
    Kovacs, Laura
    Radhakrishna, Arjun
    Zwirchmayr, Jakob
    PROGRAMMING LANGUAGES AND SYSTEMS, 2015, 9032 : 105 - 131
  • [44] Worst-Case Execution Time analysis at low cost
    Puschner, P
    DISTRIBUTED COMPUTER CONTROL SYSTEMS 1997 (DCCS'97), 1997, : 17 - 22
  • [45] THE WORST-CASE STEP IN KARMARKAR ALGORITHM
    ANSTREICHER, KM
    MATHEMATICS OF OPERATIONS RESEARCH, 1989, 14 (02) : 294 - 302
  • [46] Beyond Worst-Case Analysis
    Roughgarden, Tim
    COMMUNICATIONS OF THE ACM, 2019, 62 (03) : 88 - 96
  • [47] A worst-case analysis of the LZ2 compression algorithm
    De Agostino, S
    Silvestri, R
    INFORMATION AND COMPUTATION, 1997, 139 (02) : 258 - 268
  • [48] Worst-case analysis of Read's chromatic polynomial algorithm
    Walsh, TR
    ARS COMBINATORIA, 1997, 46 : 145 - 151
  • [49] Worst-case Structural Analysis
    Zhou, Qingnan
    Panetta, Julian
    Zorin, Denis
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):
  • [50] WORST-CASE ANALYSIS OF ALGORITHMS
    VANTRIGT, C
    PHILIPS JOURNAL OF RESEARCH, 1978, 33 (1-2) : 66 - 77