Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions

被引:0
|
作者
Oliver Braun
Fan Chung
Ron Graham
机构
[1] Trier University of Applied Sciences,
[2] Environmental Campus Birkenfeld,undefined
[3] University of California,undefined
来源
OR Spectrum | 2016年 / 38卷
关键词
Scheduling; Worst-case analysis; Time restrictions ; LPT (longest processing time first) algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following scheduling problem. We are given a set S of jobs which are to be scheduled sequentially on a single processor. Each job has an associated processing time which is required for its processing. Given a particular permutation of the jobs in S, the jobs are processed in that order with each job started as soon as possible, subject only to the following constraint: For a fixed integer B≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \ge 2$$\end{document}, no unit time interval [x,x+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x, x+1)$$\end{document} is allowed to intersect more than B jobs for any real x. There are several real world situations for which this restriction is natural. For example, suppose in addition to the jobs being executed sequentially on a single main processor, each job also requires the use of one of B identical subprocessors during its execution. Each time a job is completed, the subprocessor it was using requires one unit of time to reset itself. In this way, it is never possible for more than B jobs to be worked on during any unit interval. In Braun et al. (J Sched 17: 399–403, 2014a) it is shown that this problem is NP-hard when the value B is variable and a classical worst-case analysis of List Scheduling for this situation has been carried out. We prove a tighter bound for List Scheduling for B≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ge 3$$\end{document} and we analyze the worst-case behavior of the makespan τLPT(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mathrm{LPT}(S)$$\end{document} of LPT (longest processing time first) schedules (where we rearrange the set S of jobs into non-increasing order) in relation to the makespan τo(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _o(S)$$\end{document} of optimal schedules. We show that LPT ordered jobs can be processed within a factor of 2-2/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-2/B$$\end{document} of the optimum (plus 1) and that this factor is best possible.
引用
收藏
页码:531 / 540
页数:9
相关论文
共 50 条
  • [31] Worst-case analysis for flow shop scheduling with a learning effect
    Xu, Zhiyong
    Sun, Linyan
    Gong, Juntao
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2008, 113 (02) : 748 - 753
  • [32] Scheduling with precedence constraints: Worst-case analysis of priority algorithms
    Singh, G
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 67 (02) : 351 - 352
  • [33] Worst-case analysis of the Iterated Longest Fragment algorithm
    Békési, J
    Galambos, G
    INFORMATION PROCESSING LETTERS, 2001, 79 (03) : 147 - 153
  • [34] Worst-case analysis of generalized heapsort algorithm revisited
    Islam, TM
    Kaykobad, M
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2006, 83 (01) : 59 - 67
  • [35] The worst-case analysis of the Garey-Johnson algorithm
    Hanen, Claire
    Zinder, Yakov
    JOURNAL OF SCHEDULING, 2009, 12 (04) : 389 - 400
  • [36] A NOTE ON WORST-CASE ANALYSIS OF APPROXIMATION ALGORITHMS FOR A SCHEDULING PROBLEM
    NOWICKI, E
    SMUTNICKI, C
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 74 (01) : 128 - 134
  • [37] Evaluation of Worst-Case Execution Time of Tasks on Multi-core Processor
    Suraj, R.
    Chitra, P.
    Madumidha, S.
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 2, 2015, 325 : 441 - 448
  • [38] A review of worst-case execution-time analysis
    Puschner, P
    Burns, A
    REAL-TIME SYSTEMS, 2000, 18 (2-3) : 115 - 128
  • [39] Predicated Worst-Case Execution-Time Analysis
    Marref, Amine
    Bernat, Guillem
    RELIABLE SOFTWARE TECHNOLOGIES - ADA-EUROPE 2009, 2009, 5570 : 134 - 148
  • [40] A Functional Approach to Worst-Case Execution Time Analysis
    Rodrigues, Vitor
    Florido, Mario
    de Sousa, Simao Melo
    FUNCTIONAL AND CONSTRAINT LOGIC PROGRAMMING, 2011, 6816 : 86 - +