Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions

被引:0
|
作者
Oliver Braun
Fan Chung
Ron Graham
机构
[1] Trier University of Applied Sciences,
[2] Environmental Campus Birkenfeld,undefined
[3] University of California,undefined
来源
OR Spectrum | 2016年 / 38卷
关键词
Scheduling; Worst-case analysis; Time restrictions ; LPT (longest processing time first) algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following scheduling problem. We are given a set S of jobs which are to be scheduled sequentially on a single processor. Each job has an associated processing time which is required for its processing. Given a particular permutation of the jobs in S, the jobs are processed in that order with each job started as soon as possible, subject only to the following constraint: For a fixed integer B≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \ge 2$$\end{document}, no unit time interval [x,x+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x, x+1)$$\end{document} is allowed to intersect more than B jobs for any real x. There are several real world situations for which this restriction is natural. For example, suppose in addition to the jobs being executed sequentially on a single main processor, each job also requires the use of one of B identical subprocessors during its execution. Each time a job is completed, the subprocessor it was using requires one unit of time to reset itself. In this way, it is never possible for more than B jobs to be worked on during any unit interval. In Braun et al. (J Sched 17: 399–403, 2014a) it is shown that this problem is NP-hard when the value B is variable and a classical worst-case analysis of List Scheduling for this situation has been carried out. We prove a tighter bound for List Scheduling for B≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ge 3$$\end{document} and we analyze the worst-case behavior of the makespan τLPT(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mathrm{LPT}(S)$$\end{document} of LPT (longest processing time first) schedules (where we rearrange the set S of jobs into non-increasing order) in relation to the makespan τo(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _o(S)$$\end{document} of optimal schedules. We show that LPT ordered jobs can be processed within a factor of 2-2/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-2/B$$\end{document} of the optimum (plus 1) and that this factor is best possible.
引用
收藏
页码:531 / 540
页数:9
相关论文
共 50 条
  • [21] On-line Scheduling with Optimal Worst-Case Response Time
    Klostermeyer, W. F.
    Journal of Information & Optimization Sciences, 1995, 16 (03):
  • [22] Obstacles in worst-case execution time analysis
    Kirner, Raimund
    Puschner, Peter
    ISORC 2008: 11TH IEEE SYMPOSIUM ON OBJECT/COMPONENT/SERVICE-ORIENTED REAL-TIME DISTRIBUTED COMPUTING - PROCEEDINGS, 2008, : 333 - 339
  • [23] Better permutations for the single-processor scheduling with time restrictions
    An Zhang
    Feilang Ye
    Yong Chen
    Guangting Chen
    Optimization Letters, 2017, 11 : 715 - 724
  • [24] Better permutations for the single-processor scheduling with time restrictions
    Zhang, An
    Ye, Feilang
    Chen, Yong
    Chen, Guangting
    OPTIMIZATION LETTERS, 2017, 11 (04) : 715 - 724
  • [25] Worst-case response time analysis algorithm of messages with multiple-buffering
    Dou, Qiang
    Zhou, Xing-Ming
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2002, 30 (05): : 632 - 635
  • [27] Some results of the worst-case analysis for flow shop scheduling
    Smutnicki, C
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1998, 109 (01) : 66 - 87
  • [28] Worst-case analysis
    EDN, 13 (24):
  • [29] Worst-case analysis
    Mancini, R
    EDN, 1999, 44 (13) : 24 - 24
  • [30] Worst-case analysis of Weber's GCD algorithm
    Lavault, C
    Sedjelmaci, SM
    INFORMATION PROCESSING LETTERS, 1999, 72 (3-4) : 125 - 130