Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions

被引:0
|
作者
Oliver Braun
Fan Chung
Ron Graham
机构
[1] Trier University of Applied Sciences,
[2] Environmental Campus Birkenfeld,undefined
[3] University of California,undefined
来源
OR Spectrum | 2016年 / 38卷
关键词
Scheduling; Worst-case analysis; Time restrictions ; LPT (longest processing time first) algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the following scheduling problem. We are given a set S of jobs which are to be scheduled sequentially on a single processor. Each job has an associated processing time which is required for its processing. Given a particular permutation of the jobs in S, the jobs are processed in that order with each job started as soon as possible, subject only to the following constraint: For a fixed integer B≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \ge 2$$\end{document}, no unit time interval [x,x+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[x, x+1)$$\end{document} is allowed to intersect more than B jobs for any real x. There are several real world situations for which this restriction is natural. For example, suppose in addition to the jobs being executed sequentially on a single main processor, each job also requires the use of one of B identical subprocessors during its execution. Each time a job is completed, the subprocessor it was using requires one unit of time to reset itself. In this way, it is never possible for more than B jobs to be worked on during any unit interval. In Braun et al. (J Sched 17: 399–403, 2014a) it is shown that this problem is NP-hard when the value B is variable and a classical worst-case analysis of List Scheduling for this situation has been carried out. We prove a tighter bound for List Scheduling for B≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B\ge 3$$\end{document} and we analyze the worst-case behavior of the makespan τLPT(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mathrm{LPT}(S)$$\end{document} of LPT (longest processing time first) schedules (where we rearrange the set S of jobs into non-increasing order) in relation to the makespan τo(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _o(S)$$\end{document} of optimal schedules. We show that LPT ordered jobs can be processed within a factor of 2-2/B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2-2/B$$\end{document} of the optimum (plus 1) and that this factor is best possible.
引用
收藏
页码:531 / 540
页数:9
相关论文
共 50 条
  • [1] Worst-case analysis of the LPT algorithm for single processor scheduling with time restrictions
    Braun, Oliver
    Chung, Fan
    Graham, Ron
    OR SPECTRUM, 2016, 38 (02) : 531 - 540
  • [2] WORST-CASE ANALYSIS OF A SCHEDULING ALGORITHM
    SPINRAD, J
    OPERATIONS RESEARCH LETTERS, 1985, 4 (01) : 9 - 11
  • [3] Worst-Case Analysis of an Approximation Algorithm for Single Machine Scheduling Problem
    Grigoreva, Natalia
    PROCEEDINGS OF THE 2021 16TH CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENCE SYSTEMS (FEDCSIS), 2021, : 221 - 225
  • [4] Worst-case analysis of LPT scheduling on a small number of non-identical processors
    Mitsunobu, Takuto
    Suda, Reiji
    Suppakitpaisarn, Vorapong
    INFORMATION PROCESSING LETTERS, 2024, 183
  • [5] WORST-CASE ANALYSIS OF DANNENBRING ALGORITHM FOR FLOWSHOP SCHEDULING
    NOWICKI, E
    SMUTNICKI, C
    OPERATIONS RESEARCH LETTERS, 1991, 10 (08) : 473 - 480
  • [6] WORST-CASE ANALYSIS OF AN APPROXIMATION ALGORITHM FOR FLOWSHOP SCHEDULING
    NOWICKI, E
    SMUTNICKI, C
    OPERATIONS RESEARCH LETTERS, 1989, 8 (03) : 171 - 177
  • [7] Worst-case execution time analysis for a Java']Java processor
    Schoeberl, Martin
    Puffitsch, Wolfgang
    Pedersen, Rasmus Ulslev
    Huber, Benedikt
    SOFTWARE-PRACTICE & EXPERIENCE, 2010, 40 (06): : 507 - 542
  • [8] The worst-case analysis of the MULTIFIT algorithm for scheduling nonsimultaneous parallel machines
    Chang, SY
    Hwang, HC
    DISCRETE APPLIED MATHEMATICS, 1999, 92 (2-3) : 135 - 147
  • [9] Single-processor scheduling with time restrictions
    O. Braun
    F. Chung
    R. Graham
    Journal of Scheduling, 2014, 17 : 399 - 403
  • [10] Single-processor scheduling with time restrictions
    Braun, O.
    Chung, F.
    Graham, R.
    JOURNAL OF SCHEDULING, 2014, 17 (04) : 399 - 403