Derivatives of the Spectral Function and Sobolev Norms of Eigenfunctions on a Closed Riemannian Manifold

被引:0
|
作者
Xu Bin
机构
来源
Annals of Global Analysis and Geometry | 2004年 / 26卷
关键词
Laplace–Beltrami operator; spectral function; unit spectral projection operator; Sobolev norms of eigenfunctions;
D O I
暂无
中图分类号
学科分类号
摘要
Let e(x, y, λ) be the spectral function and χλ the unit spectral projection operator, with respect to the Laplace–Beltrami operator on a closed Riemannian manifold M. We generalize the one-term asymptotic expansion of e(x, x, λ) by Hörmander (Acta Math.88 (1968), 341–370) to that of ∂xα∂yβe(x,y,λ)|x=y for any multiindices α, β in a sufficiently small geodesic normal coordinate chart of M. Moreover, we extend the sharp (L2,Lp) (2 ≤p≤∞) estimates of χλ by Sogge (J. Funct. Anal.77 (1988), 123–134; London Math. Soc. Lecture Note Ser. 137, Cambridge University Press, Cambridge, 1989; Vol. 1, pp. 416–422) to the sharp (L2, Sobolev Lp) estimates of χλ.
引用
收藏
页码:231 / 252
页数:21
相关论文
共 50 条
  • [21] The Identification of Convex Function on Riemannian Manifold
    Cui, Xiaosong
    Wen, Xin
    Zhang, Yunxia
    Zou, Li
    Xu, Yang
    PRACTICAL APPLICATIONS OF INTELLIGENT SYSTEMS, ISKE 2013, 2014, 279 : 899 - +
  • [22] The length of a shortest geodesic net on a closed Riemannian manifold
    Rotman, Regina
    TOPOLOGY, 2007, 46 (04) : 343 - 356
  • [23] Rigidity of closed submanifolds in a locally symmetric Riemannian manifold
    Gu Juan-ru
    Leng Yan
    Xu Hong-wei
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2016, 31 (02) : 237 - 252
  • [24] Rigidity of closed submanifolds in a locally symmetric Riemannian manifold
    Juan-ru Gu
    Yan Leng
    Hong-wei Xu
    Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 237 - 252
  • [25] INVARIANT TESTS FOR UNIFORMITY ON COMPACT RIEMANNIAN MANIFOLDS BASED ON SOBOLEV NORMS
    GINEM, E
    ANNALS OF STATISTICS, 1975, 3 (06): : 1243 - 1266
  • [26] Inverse spectral problems on a closed manifold
    Krupchyk, Katsiaryna
    Kurylev, Yaroslav
    Lassas, Matti
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (01): : 42 - 59
  • [27] EXISTENCE OF INFINITELY MANY CLOSED GEODESICS ON A COMPACT RIEMANNIAN MANIFOLD
    VIGUEPOIRRIER, M
    VIGUEPOIRRIER, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 281 (09): : 289 - 291
  • [28] FRACTIONAL CALDER<acute accent>ON PROBLEM ON A CLOSED RIEMANNIAN MANIFOLD
    Feizmohammadi, Ali
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (04) : 2991 - 3013
  • [29] REGULARITY OF A RIEMANNIAN MANIFOLD GROWTH-FUNCTION
    GRIMALDI, R
    PANSU, P
    GEOMETRIAE DEDICATA, 1994, 50 (03) : 301 - 307
  • [30] The log-Sobolev inequality on loop space over a compact Riemannian manifold
    Gong, FZ
    Ma, ZM
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 157 (02) : 599 - 623