Derivatives of the Spectral Function and Sobolev Norms of Eigenfunctions on a Closed Riemannian Manifold

被引:0
|
作者
Xu Bin
机构
来源
Annals of Global Analysis and Geometry | 2004年 / 26卷
关键词
Laplace–Beltrami operator; spectral function; unit spectral projection operator; Sobolev norms of eigenfunctions;
D O I
暂无
中图分类号
学科分类号
摘要
Let e(x, y, λ) be the spectral function and χλ the unit spectral projection operator, with respect to the Laplace–Beltrami operator on a closed Riemannian manifold M. We generalize the one-term asymptotic expansion of e(x, x, λ) by Hörmander (Acta Math.88 (1968), 341–370) to that of ∂xα∂yβe(x,y,λ)|x=y for any multiindices α, β in a sufficiently small geodesic normal coordinate chart of M. Moreover, we extend the sharp (L2,Lp) (2 ≤p≤∞) estimates of χλ by Sogge (J. Funct. Anal.77 (1988), 123–134; London Math. Soc. Lecture Note Ser. 137, Cambridge University Press, Cambridge, 1989; Vol. 1, pp. 416–422) to the sharp (L2, Sobolev Lp) estimates of χλ.
引用
收藏
页码:231 / 252
页数:21
相关论文
共 50 条