Rigidity of closed submanifolds in a locally symmetric Riemannian manifold

被引:0
|
作者
Gu Juan-ru [1 ,2 ]
Leng Yan [2 ]
Xu Hong-wei [2 ]
机构
[1] Zhejiang Univ Technol, Dept Appl Math, Hangzhou 310023, Zhejiang, Peoples R China
[2] Zhejiang Univ, Ctr Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Submanifold; Ejiri rigidity theorem; Ricci curvature; Mean curvature; CONSTANT MEAN-CURVATURE; MINIMAL SUBMANIFOLDS; SPHERE THEOREM;
D O I
10.1007/s11766-016-3227-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M (n) (n a parts per thousand yen 4) be an oriented closed submanifold with parallel mean curvature in an (n + p)-dimensional locally symmetric Riemannian manifold N (n+p) . We prove that if the sectional curvature of N is positively pinched in [delta, 1], and the Ricci curvature of M satisfies a pinching condition, then M is either a totally umbilical submanifold, or delta = 1, and N is of constant curvature. This result generalizes the geometric rigidity theorem due to Xu and Gu [15].
引用
收藏
页码:237 / 252
页数:16
相关论文
共 50 条