RIGIDITY THEOREMS OF HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD

被引:0
|
作者
Zhang, Shicheng [1 ]
Wu, Baoqiang [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math, Xuzhou 221116, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Locally symmetric; linear Weingarten hypersurfaces; totally umbilical; CONSTANT SCALAR CURVATURE; SUBMANIFOLDS;
D O I
10.1090/S0002-9939-2013-11780-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the linear Weingarten hypersurfaces in a locally symmetric Riemannian manifold are investigated and the rigidity theorems are proved by the operator square introduced by S. Y. Cheng and S. T. Yau, which is a generalization of main results obtained by several authors.
引用
收藏
页码:4015 / 4025
页数:11
相关论文
共 50 条
  • [1] RIGIDITY THEOREMS FOR COMPACT HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS
    Zhang, Shicheng
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (10) : 4485 - 4492
  • [2] RIGIDITY THEOREMS FOR HYPERSURFACES IN RIEMANNIAN MANIFOLD OF CONSTANT CURVATURE
    LI, AM
    [J]. KEXUE TONGBAO, 1986, 31 (08): : 569 - 570
  • [3] Rigidity of closed submanifolds in a locally symmetric Riemannian manifold
    GU Juan-ru
    LENG Yan
    XU Hong-wei
    [J]. Applied Mathematics:A Journal of Chinese Universities, 2016, 31 (02) : 237 - 252
  • [4] Rigidity of closed submanifolds in a locally symmetric Riemannian manifold
    Juan-ru Gu
    Yan Leng
    Hong-wei Xu
    [J]. Applied Mathematics-A Journal of Chinese Universities, 2016, 31 : 237 - 252
  • [5] Rigidity of closed submanifolds in a locally symmetric Riemannian manifold
    Gu Juan-ru
    Leng Yan
    Xu Hong-wei
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2016, 31 (02): : 237 - 252
  • [6] A MAXIMUM PRINCIPLE FOR COMPLETE HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD
    Zhang, Shicheng
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 29 (01): : 141 - 153
  • [7] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    de Lima, Eudes L.
    de Lima, Henrique F.
    Rocha, Lucas S.
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2022, 8 (01) : 388 - 402
  • [8] Revisiting linear Weingarten hypersurfaces immersed into a locally symmetric Riemannian manifold
    Eudes L. de Lima
    Henrique F. de Lima
    Lucas S. Rocha
    [J]. European Journal of Mathematics, 2022, 8 : 388 - 402
  • [9] Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold
    Gomes, Jose N.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 133 : 15 - 27
  • [10] Compact hypersurfaces in a locally symmetric manifold
    Chen, Junfeng
    Shu, Shichang
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (01): : 95 - 108