Symmetry results in the half-space for a semi-linear fractional Laplace equation

被引:0
|
作者
B. Barrios
L. Del Pezzo
J. García-Melián
A. Quaas
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático
[2] CONICET,Departamento de Matemática y Estadística
[3] Universidad Torcuato Di Tella,Instituto Universitario de Estudios Avanzados (IUdEA), en Física Atómica, Molecular y Fotónica
[4] Universidad de La Laguna,Departamento de Matemática
[5] Universidad Técnica Federico Santa María,undefined
关键词
Fractional Laplacian; Symmetry solutions; One-dimensional anaysis; Energy formulas; 35B06; 35B09; 35J61; 45K05; 35S11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the semi-linear fractional Laplace equation (-Δ)su=f(u)inR+N,u=0inRN\R+N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^s u = f(u) \quad \text { in } {\mathbb {R}}^N_+,\quad u=0 \quad \text { in } {\mathbb {R}}^N{\setminus } {\mathbb {R}}^N_+, \end{aligned}$$\end{document}where R+N={x=(x′,xN)∈RN:xN>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+=\{x=(x',x_N)\in {\mathbb {R}}^N:\ x_N>0\}$$\end{document} stands for the half-space and f is a locally Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of this problem, and we prove among other things that if u is a bounded solution with ρ:=supRNu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :=\sup _{{\mathbb {R}}^N}u$$\end{document} verifying f(ρ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\rho )=0$$\end{document}, then u is necessarily one dimensional.
引用
收藏
页码:1385 / 1416
页数:31
相关论文
共 50 条
  • [31] Monotonicity and nonexistence results for some fractional elliptic problems in the half-space
    Fall, Mouhamed Moustapha
    Weth, Tobias
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2016, 18 (01)
  • [32] Uniform decay of local energy and the semi-linear wave equation on Schwarzschild space
    Blue, Pieter
    Sterbenz, Jacob
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 268 (02) : 481 - 504
  • [33] Time-fractional wave-diffusion equation in an inhomogeneous half-space
    Liemert, Andre
    Kienle, Alwin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (22)
  • [34] WELL-POSEDNESS RESULTS AND BLOW-UP FOR A SEMI-LINEAR TIME FRACTIONAL DIFFUSION EQUATION WITH VARIABLE COEFFICIENTS
    Au, Vo van
    Singh, Jagdev
    Nguyen, Anh Tuan
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (06): : 3581 - 3607
  • [35] Uniform Decay of Local Energy and the Semi-Linear Wave Equation on Schwarzschild Space
    Pieter Blue
    Jacob Sterbenz
    Communications in Mathematical Physics, 2006, 268 : 481 - 504
  • [36] The nonlinear Schrodinger equation in the half-space
    Fernandez, Antonio J.
    Weth, Tobias
    MATHEMATISCHE ANNALEN, 2022, 383 (1-2) : 361 - 397
  • [37] The Helmholtz equation with impedance in a half-space
    Durán, M
    Muga, I
    Nédélec, JC
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (09) : 561 - 566
  • [38] Exponential stabilization of semi-linear wave equation
    El Alami, Abdessamad
    Zine, Rabie
    Zine, Rabie (rabie.zine@gmail.com), 1600, Forum-Editrice Universitaria Udinese SRL (44): : 995 - 1002
  • [39] On the controllability of a Cubic Semi-Linear Wave Equation
    Barron-Romero, Carlos
    2019 6TH INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT 2019), 2019, : 1664 - 1669
  • [40] Exponential stabilization of semi-linear wave equation
    El Alami, Abdessamad
    Zine, Rabie
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 995 - 1002