Symmetry results in the half-space for a semi-linear fractional Laplace equation

被引:0
|
作者
B. Barrios
L. Del Pezzo
J. García-Melián
A. Quaas
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático
[2] CONICET,Departamento de Matemática y Estadística
[3] Universidad Torcuato Di Tella,Instituto Universitario de Estudios Avanzados (IUdEA), en Física Atómica, Molecular y Fotónica
[4] Universidad de La Laguna,Departamento de Matemática
[5] Universidad Técnica Federico Santa María,undefined
关键词
Fractional Laplacian; Symmetry solutions; One-dimensional anaysis; Energy formulas; 35B06; 35B09; 35J61; 45K05; 35S11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the semi-linear fractional Laplace equation (-Δ)su=f(u)inR+N,u=0inRN\R+N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^s u = f(u) \quad \text { in } {\mathbb {R}}^N_+,\quad u=0 \quad \text { in } {\mathbb {R}}^N{\setminus } {\mathbb {R}}^N_+, \end{aligned}$$\end{document}where R+N={x=(x′,xN)∈RN:xN>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+=\{x=(x',x_N)\in {\mathbb {R}}^N:\ x_N>0\}$$\end{document} stands for the half-space and f is a locally Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of this problem, and we prove among other things that if u is a bounded solution with ρ:=supRNu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :=\sup _{{\mathbb {R}}^N}u$$\end{document} verifying f(ρ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\rho )=0$$\end{document}, then u is necessarily one dimensional.
引用
收藏
页码:1385 / 1416
页数:31
相关论文
共 50 条