Symmetry results in the half-space for a semi-linear fractional Laplace equation

被引:0
|
作者
B. Barrios
L. Del Pezzo
J. García-Melián
A. Quaas
机构
[1] Universidad de La Laguna,Departamento de Análisis Matemático
[2] CONICET,Departamento de Matemática y Estadística
[3] Universidad Torcuato Di Tella,Instituto Universitario de Estudios Avanzados (IUdEA), en Física Atómica, Molecular y Fotónica
[4] Universidad de La Laguna,Departamento de Matemática
[5] Universidad Técnica Federico Santa María,undefined
关键词
Fractional Laplacian; Symmetry solutions; One-dimensional anaysis; Energy formulas; 35B06; 35B09; 35J61; 45K05; 35S11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we analyze the semi-linear fractional Laplace equation (-Δ)su=f(u)inR+N,u=0inRN\R+N,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} (-\Delta )^s u = f(u) \quad \text { in } {\mathbb {R}}^N_+,\quad u=0 \quad \text { in } {\mathbb {R}}^N{\setminus } {\mathbb {R}}^N_+, \end{aligned}$$\end{document}where R+N={x=(x′,xN)∈RN:xN>0}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^N_+=\{x=(x',x_N)\in {\mathbb {R}}^N:\ x_N>0\}$$\end{document} stands for the half-space and f is a locally Lipschitz nonlinearity. We completely characterize one-dimensional bounded solutions of this problem, and we prove among other things that if u is a bounded solution with ρ:=supRNu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho :=\sup _{{\mathbb {R}}^N}u$$\end{document} verifying f(ρ)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\rho )=0$$\end{document}, then u is necessarily one dimensional.
引用
收藏
页码:1385 / 1416
页数:31
相关论文
共 50 条
  • [1] Symmetry results in the half-space for a semi-linear fractional Laplace equation
    Barrios, B.
    Del Pezzo, L.
    Garcia-Melian, J.
    Quaas, A.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2018, 197 (05) : 1385 - 1416
  • [2] Weighted Sobolev spaces for the Laplace equation in the half-space
    Boulmezaoud, TZ
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (03): : 221 - 226
  • [3] SYMMETRY AND NONEXISTENCE RESULTS FOR A FRACTIONAL HENON-HARDY SYSTEM ON A HALF-SPACE
    Anh Tuan Duong
    Phuong Le
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (03) : 789 - 816
  • [4] Nonexistence results for a fractional Henon-Lane-Emden equation on a half-space
    Tang, Sufang
    Dou, Jingbo
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (13)
  • [5] Asymptotics of Solutions of the Dirichlet Problem for the Laplace Equation in the Half-Space
    P. V. Denisov
    Journal of Mathematical Sciences, 2025, 287 (5) : 729 - 734
  • [6] Shape differentiability of the Neumann problem of the Laplace equation in the half-space
    Amrouche, Cherif
    Necasova, Sarka
    Sokolowski, Jan
    CONTROL AND CYBERNETICS, 2008, 37 (04): : 747 - 769
  • [7] Symmetry Principle for Solutions of the Helmholtz Equation in a Half-Space
    Kuzovatov V.I.
    Kytmanov A.M.
    Journal of Mathematical Sciences, 2014, 198 (5) : 564 - 574
  • [8] INVERSE COEFFICIENT PROBLEM FOR THE SEMI-LINEAR FRACTIONAL TELEGRAPH EQUATION
    Lopushanska, Halyna
    Rapita, Vitalia
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [9] On the Laplace equation with a supercritical nonlinear Robin boundary condition in the half-space
    Ferreira, Lucas C. F.
    Medeiros, Everaldo S.
    Montenegro, Marcelo
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2013, 47 (3-4) : 667 - 682
  • [10] On the Laplace equation with a supercritical nonlinear Robin boundary condition in the half-space
    Lucas C. F. Ferreira
    Everaldo S. Medeiros
    Marcelo Montenegro
    Calculus of Variations and Partial Differential Equations, 2013, 47 : 667 - 682