On the Laplace equation with a supercritical nonlinear Robin boundary condition in the half-space

被引:6
|
作者
Ferreira, Lucas C. F. [1 ]
Medeiros, Everaldo S. [2 ]
Montenegro, Marcelo [1 ]
机构
[1] Univ Estadual Campinas, Dept Matemat, IMECC, BR-13083859 Campinas, SP, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
基金
巴西圣保罗研究基金会;
关键词
31B05; 34B27; 35J65; 31B10;
D O I
10.1007/s00526-012-0531-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the Laplace equation in the half-space with a nonlinear supercritical Robin boundary condition on , where n a parts per thousand yen 3 and lambda a parts per thousand yen 0. Existence of solutions is obtained by means of a fixed point argument for a small data . The indexes p, q are chosen for the norm to be invariant by scaling of the boundary problem. The solution u is positive whether f(x) > 0 a.e. . When f is radially symmetric, u is invariant under rotations around the axis {x (n) = 0}. Moreover, in a certain L (q) -norm, we show that solutions depend continuously on the parameter lambda a parts per thousand yen 0.
引用
收藏
页码:667 / 682
页数:16
相关论文
共 50 条