On a periodic prey-predator system with infinite delays

被引:0
|
作者
Li Yongkun
Xu Guitong
机构
[1] Yunnan Univ.,Dept. of Math.
关键词
34K15; 34K20; 92A15; Infinite delay; periodic solution; prey-predator system; Fredholm mapping;
D O I
10.1007/s11766-000-0050-3
中图分类号
学科分类号
摘要
Based on the theory of coincidence degree, the existence of positive periodic solutions is established for a periodic prey-predator system with infinite delays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \dot x\left( t \right) = x\left( t \right)\left[ {\alpha \left( t \right) - \gamma \left( t \right)y\left( t \right) - \gamma \left( t \right)\int_0^\infty {K_1 } \left( {t,s} \right)y\left( {t - s} \right)ds - } \right. \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_1 \left( {t,s,\theta } \right)y\left( {t - s} \right)y\left( {t - \theta } \right)d\theta ds} } } \right], \hfill \\ \dot y\left( t \right) = y\left( t \right)\left[ { - \beta \left( t \right) + \mu \left( t \right)x\left( t \right) + \mu \left( t \right)\int_0^\infty {K_2 } \left( {t,s} \right)x\left( {t - s} \right)ds} \right. + \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_2 \left( {t,s,\theta } \right)x\left( {t - \theta } \right)x\left( {t - s} \right)d\theta ds} } } \right], \hfill \\ \end{gathered} $$ \end{document} where α, γ, β, μ are positive continuous ω-periodic functions, Ki∈C(R×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments,. respectively, Ri∈C(R×[0, ∞)×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments, respectively.
引用
收藏
页码:267 / 272
页数:5
相关论文
共 50 条
  • [41] A stochastic prey-predator model with time-dependent delays
    Dai, Xiangjun
    Mao, Zhi
    Li, Xiaojun
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [42] Multiple periodic solutions of a generalized predator-prey system with delays
    Zhang, Zhengqiu
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2006, 141 : 175 - 188
  • [43] On a periodic predator-prey system with time delays on time scales
    Liu, Jie
    Li, Yongkun
    Zhao, Lili
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) : 3432 - 3438
  • [44] Feedback control effect on the Lotka-Volterra prey-predator system with discrete delays
    Shi, Chunling
    Chen, Xiaoying
    Wang, Yiqin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [45] Effect of multiple delays on the dynamics of cannibalistic prey-predator system with disease in both populations
    Biswas, Santosh
    Samanta, Sudip
    Khan, Qamar J. A.
    Chattopadhyay, Joydev
    INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (04)
  • [46] Trade-off and chaotic dynamics of prey-predator system with two discrete delays
    Bhargava, Masoom
    Sajan
    Dubey, Balram
    CHAOS, 2023, 33 (05)
  • [47] Feedback control effect on the Lotka-Volterra prey-predator system with discrete delays
    Chunling Shi
    Xiaoying Chen
    Yiqin Wang
    Advances in Difference Equations, 2017
  • [48] A Prey-Predator Model
    Jadav, Ravindra
    Goveas, Jenice Jean
    Chandra, G. Sharath
    Madhu, Gita
    Udham, P. K.
    Nayak, Pavithra P.
    CURRENT SCIENCE, 2020, 118 (02): : 180 - 180
  • [49] The Impact of Fear on a Harvested Prey-Predator System with Disease in a Prey
    Ibrahim, Hiba Abdullah
    Naji, Raid Kamel
    MATHEMATICS, 2023, 11 (13)
  • [50] Oscillatory behavior in a lattice prey-predator system
    Lipowski, A
    PHYSICAL REVIEW E, 1999, 60 (05): : 5179 - 5184