On a periodic prey-predator system with infinite delays

被引:0
|
作者
Li Yongkun
Xu Guitong
机构
[1] Yunnan Univ.,Dept. of Math.
关键词
34K15; 34K20; 92A15; Infinite delay; periodic solution; prey-predator system; Fredholm mapping;
D O I
10.1007/s11766-000-0050-3
中图分类号
学科分类号
摘要
Based on the theory of coincidence degree, the existence of positive periodic solutions is established for a periodic prey-predator system with infinite delays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \dot x\left( t \right) = x\left( t \right)\left[ {\alpha \left( t \right) - \gamma \left( t \right)y\left( t \right) - \gamma \left( t \right)\int_0^\infty {K_1 } \left( {t,s} \right)y\left( {t - s} \right)ds - } \right. \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_1 \left( {t,s,\theta } \right)y\left( {t - s} \right)y\left( {t - \theta } \right)d\theta ds} } } \right], \hfill \\ \dot y\left( t \right) = y\left( t \right)\left[ { - \beta \left( t \right) + \mu \left( t \right)x\left( t \right) + \mu \left( t \right)\int_0^\infty {K_2 } \left( {t,s} \right)x\left( {t - s} \right)ds} \right. + \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_2 \left( {t,s,\theta } \right)x\left( {t - \theta } \right)x\left( {t - s} \right)d\theta ds} } } \right], \hfill \\ \end{gathered} $$ \end{document} where α, γ, β, μ are positive continuous ω-periodic functions, Ki∈C(R×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments,. respectively, Ri∈C(R×[0, ∞)×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments, respectively.
引用
收藏
页码:267 / 272
页数:5
相关论文
共 50 条
  • [21] On a periodic predator-prey system with nonlinear diffusion and delays
    Muhammadhaji A.
    Mahemuti R.
    Teng Z.
    Afrika Matematika, 2016, 27 (7-8) : 1179 - 1197
  • [22] Stability and Bifurcation of a Prey-Predator System with Additional Food and Two Discrete Delays
    Kumar, Ankit
    Dubey, Balram
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 126 (02): : 505 - 547
  • [23] Modeling and analysis in a prey-predator system with commercial harvesting and double time delays
    Liu, Chao
    Lu, Na
    Zhang, Qingling
    Li, Jinna
    Liu, Peiyong
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 : 77 - 101
  • [24] Predator survival analysis of a Prey-Predator system with prey species pool
    Sagamiko, Thadei
    Kozlov, Vladimir
    Wennergren, Uno
    SCIENTIFIC AFRICAN, 2021, 14
  • [25] A prey-predator system with disease in prey and cooperative hunting strategy in predator
    Saha, Sangeeta
    Samanta, G. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (48)
  • [26] Periodicity and asymptotic stability of a predator-prey system with infinite delays
    Yan, Weiping
    Yan, Jurang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (05) : 1465 - 1472
  • [27] Solution of Prey-Predator System by ADM
    Moniem, A. A.
    Satouri, J.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [28] Global stability of a stochastic predator-prey system with infinite delays
    Liu, Qun
    Liu, Yiliang
    Pan, Xue
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 235 : 1 - 7
  • [29] On Nonautonomous Prey-predator Patchy System
    Ruan Xiaoe (College of Science
    NortheasternMathematicalJournal, 1999, (01) : 25 - 31
  • [30] Allee effect in a prey-predator system
    Hadjiavgousti, Despina
    Ichtiaroglou, Simos
    CHAOS SOLITONS & FRACTALS, 2008, 36 (02) : 334 - 342