Based on the theory of coincidence degree, the existence of positive periodic solutions is established for a periodic prey-predator system with infinite delays \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\begin{gathered} \dot x\left( t \right) = x\left( t \right)\left[ {\alpha \left( t \right) - \gamma \left( t \right)y\left( t \right) - \gamma \left( t \right)\int_0^\infty {K_1 } \left( {t,s} \right)y\left( {t - s} \right)ds - } \right. \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_1 \left( {t,s,\theta } \right)y\left( {t - s} \right)y\left( {t - \theta } \right)d\theta ds} } } \right], \hfill \\ \dot y\left( t \right) = y\left( t \right)\left[ { - \beta \left( t \right) + \mu \left( t \right)x\left( t \right) + \mu \left( t \right)\int_0^\infty {K_2 } \left( {t,s} \right)x\left( {t - s} \right)ds} \right. + \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_2 \left( {t,s,\theta } \right)x\left( {t - \theta } \right)x\left( {t - s} \right)d\theta ds} } } \right], \hfill \\ \end{gathered} $$
\end{document} where α, γ, β, μ are positive continuous ω-periodic functions, Ki∈C(R×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments,. respectively, Ri∈C(R×[0, ∞)×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments, respectively.