On a periodic prey-predator system with infinite delays

被引:0
|
作者
Li Yongkun
Xu Guitong
机构
[1] Yunnan Univ.,Dept. of Math.
关键词
34K15; 34K20; 92A15; Infinite delay; periodic solution; prey-predator system; Fredholm mapping;
D O I
10.1007/s11766-000-0050-3
中图分类号
学科分类号
摘要
Based on the theory of coincidence degree, the existence of positive periodic solutions is established for a periodic prey-predator system with infinite delays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \dot x\left( t \right) = x\left( t \right)\left[ {\alpha \left( t \right) - \gamma \left( t \right)y\left( t \right) - \gamma \left( t \right)\int_0^\infty {K_1 } \left( {t,s} \right)y\left( {t - s} \right)ds - } \right. \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_1 \left( {t,s,\theta } \right)y\left( {t - s} \right)y\left( {t - \theta } \right)d\theta ds} } } \right], \hfill \\ \dot y\left( t \right) = y\left( t \right)\left[ { - \beta \left( t \right) + \mu \left( t \right)x\left( t \right) + \mu \left( t \right)\int_0^\infty {K_2 } \left( {t,s} \right)x\left( {t - s} \right)ds} \right. + \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_2 \left( {t,s,\theta } \right)x\left( {t - \theta } \right)x\left( {t - s} \right)d\theta ds} } } \right], \hfill \\ \end{gathered} $$ \end{document} where α, γ, β, μ are positive continuous ω-periodic functions, Ki∈C(R×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments,. respectively, Ri∈C(R×[0, ∞)×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments, respectively.
引用
收藏
页码:267 / 272
页数:5
相关论文
共 50 条
  • [31] Impulsive Harvesting Prey-predator System
    Wang, Wei
    Xiong, Zuoliang
    Sun, Zepeng
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION (ICMS2009), VOL 3, 2009, : 12 - 17
  • [32] Viable populations in a prey-predator system
    Bonneuil, N
    Mullers, K
    JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (03) : 261 - 293
  • [33] Prey-predator strategies in a multiagent system
    Lenzitti, B
    Tegolo, D
    Valenti, C
    CAMP 2005: SEVENTH INTERNATIONAL WORKSHOP ON COMPUTER ARCHITECTURE FOR MACHINE PERCEPTION , PROCEEDINGS, 2005, : 184 - 189
  • [34] THE SOLUTION OF A SPECIAL PREY-PREDATOR SYSTEM
    ARRIGONI, M
    STEINER, A
    STUDIA BIOPHYSICA, 1988, 123 (02): : 125 - 134
  • [35] Effect of harvesting and infection on predator in a prey-predator system
    Jana, Soovoojeet
    Guria, Srabani
    Das, Uttam
    Kar, T. K.
    Ghorai, Abhijit
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 917 - 930
  • [36] Modeling and analysis of a prey-predator system with disease in the prey
    Jana, Soovoojeet
    Kar, T. K.
    CHAOS SOLITONS & FRACTALS, 2013, 47 : 42 - 53
  • [37] EFFECT OF HARVESTING AND PREY REFUGE IN A PREY-PREDATOR SYSTEM
    Lv, Yunfei
    Zhang, Zhengyang
    Yuan, Rong
    JOURNAL OF BIOLOGICAL SYSTEMS, 2014, 22 (01) : 133 - 150
  • [38] Studying attention dynamics of a predator in a prey-predator system
    Nishimura, SI
    ARTIFICIAL LIFE VII, 2000, : 337 - 342
  • [39] Analysis of a competitive prey-predator system with a prey refuge
    Sarwardi, Sahabuddin
    Mandal, Prashanta Kumar
    Ray, Santanu
    BIOSYSTEMS, 2012, 110 (03) : 133 - 148
  • [40] A stochastic prey-predator model with time-dependent delays
    Xiangjun Dai
    Zhi Mao
    Xiaojun Li
    Advances in Difference Equations, 2017