On a periodic prey-predator system with infinite delays

被引:0
|
作者
Li Yongkun
Xu Guitong
机构
[1] Yunnan Univ.,Dept. of Math.
关键词
34K15; 34K20; 92A15; Infinite delay; periodic solution; prey-predator system; Fredholm mapping;
D O I
10.1007/s11766-000-0050-3
中图分类号
学科分类号
摘要
Based on the theory of coincidence degree, the existence of positive periodic solutions is established for a periodic prey-predator system with infinite delays \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \dot x\left( t \right) = x\left( t \right)\left[ {\alpha \left( t \right) - \gamma \left( t \right)y\left( t \right) - \gamma \left( t \right)\int_0^\infty {K_1 } \left( {t,s} \right)y\left( {t - s} \right)ds - } \right. \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_1 \left( {t,s,\theta } \right)y\left( {t - s} \right)y\left( {t - \theta } \right)d\theta ds} } } \right], \hfill \\ \dot y\left( t \right) = y\left( t \right)\left[ { - \beta \left( t \right) + \mu \left( t \right)x\left( t \right) + \mu \left( t \right)\int_0^\infty {K_2 } \left( {t,s} \right)x\left( {t - s} \right)ds} \right. + \hfill \\ \left. {\int_0^\infty {\int_0^\infty {R_2 \left( {t,s,\theta } \right)x\left( {t - \theta } \right)x\left( {t - s} \right)d\theta ds} } } \right], \hfill \\ \end{gathered} $$ \end{document} where α, γ, β, μ are positive continuous ω-periodic functions, Ki∈C(R×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments,. respectively, Ri∈C(R×[0, ∞)×[0, ∞), (0, ∞)) (i=1, 2) are ω-periodic with respect to their first arguments, respectively.
引用
收藏
页码:267 / 272
页数:5
相关论文
共 50 条
  • [1] ON A PERIODIC PREY-PREDATOR SYSTEM WITH INFINITE DELAYS
    Li Yongkun Xu GuitongDept.of Math.
    AppliedMathematics:AJournalofChineseUniversities, 2000, (03) : 267 - 272
  • [2] Strange periodic attractors in a prey-predator system with infected prey
    Hilker, Frank M.
    Malchow, Horst
    MATHEMATICAL POPULATION STUDIES, 2006, 13 (03) : 119 - 134
  • [3] Almost Periodic Solution for an Epidemic Prey-Predator System with Impulsive Effects and Multiple Delays
    Tian, Baodan
    Chen, Ning
    Qiu, Yanhong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2015, 2015
  • [4] Global existence of positive periodic solutions of periodic predator-prey system with infinite delays
    Fan, M
    Wang, K
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (01) : 1 - 11
  • [5] A PREY-PREDATOR MODEL WITH MIGRATIONS AND DELAYS
    Al-Darabsah, Isam
    Tang, Xianhua
    Yuan, Yuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (03): : 737 - 761
  • [6] Dynamics Analysis for a Prey-Predator Evolutionary Game System with Delays
    Cheng, Haihui
    Meng, Xinzhu
    Hayat, Tasawar
    Hobiny, Aatef
    DYNAMIC GAMES AND APPLICATIONS, 2024, 14 (02) : 480 - 507
  • [7] Stability and Hopf Bifurcation in a Prey-Predator System with Disease in the Prey and Two Delays
    Liu, Juan
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [8] Existence and stability of a unique almost periodic solution for a prey-predator system with impulsive effects and multiple delays
    Tian, Baodan
    Zhong, Shouming
    Chen, Ning
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [9] The existence of a periodic solution for a generalized prey-predator system with delay
    Zhang, ZQ
    Wang, ZC
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 : 475 - 486
  • [10] Existence and stability of a unique almost periodic solution for a prey-predator system with impulsive effects and multiple delays
    Baodan Tian
    Shouming Zhong
    Ning Chen
    Advances in Difference Equations, 2016