Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

被引:0
|
作者
Mirco Cannoni
机构
[1] Universidad de Huelva,Departamento de Física Aplicada, Facultad de Ciencias Experimentales
来源
关键词
Dark Matter; Dark Matter Particle; Nonrelativistic Limit; Annihilation Cross Section; Majorana Fermion;
D O I
暂无
中图分类号
学科分类号
摘要
We find an exact formula for the thermally averaged cross section times the relative velocity ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}} \rangle $$\end{document} with relativistic Maxwell–Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x=m/T≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=m/T\gg 1$$\end{document} directly gives the nonrelativistic limit of ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}}\rangle $$\end{document}, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (s)$$\end{document} in powers of the nonrelativistic relative velocity vr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_r$$\end{document}. We show the correct invariant procedure that gives the nonrelativistic average ⟨σnrvr⟩nr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma _\mathrm{{nr}} v_r \rangle _\mathrm{{nr}}$$\end{document} coinciding with the large x expansion of ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}}\rangle $$\end{document} in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative vrel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_\text {rel}$$\end{document}, showing the uselessness of the Møller velocity and further elucidating the conceptual and numerical inconsistencies related with its use.
引用
收藏
相关论文
共 50 条
  • [41] Effective field theory approach to nuclear matter
    P. Saviankou
    F. Grümmer
    E. Epelbaum
    S. Krewald
    Ulf-G. Meißner
    Physics of Atomic Nuclei, 2006, 69 : 1119 - 1123
  • [42] Beyond effective field theory for dark matter searches at the LHC
    O. Buchmueller
    Matthew J. Dolan
    Christopher McCabe
    Journal of High Energy Physics, 2014
  • [43] Including the Z in an Effective Field Theory for dark matter at the LHC
    Sacha Davidson
    Journal of High Energy Physics, 2014
  • [44] Superfluid effective field theory for dark matter direct detection
    Matchev, Konstantin
    Smolinsky, Jordan
    Xue, Wei
    You, Yining
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)
  • [45] Including the Z in an Effective Field Theory for dark matter at the LHC
    Davidson, Sacha
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (10):
  • [46] Effective field theory and keV lines from dark matter
    Krall, Rebecca
    Reece, Matthew
    Roxlo, Thomas
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2014, (09):
  • [47] Effective field theory for dark matter absorption on single phonons
    Mitridate, Andrea
    Pardo, Kris
    Trickle, Tanner
    Zurek, Kathryn M.
    PHYSICAL REVIEW D, 2024, 109 (01)
  • [48] On the validity of the effective field theory for dark matter searches at the LHC
    Busoni, Giorgio
    De Simone, Andrea
    Morgante, Enrico
    Riotto, Antonio
    PHYSICS LETTERS B, 2014, 728 : 412 - 421
  • [49] Dark matter of any spin: An effective field theory and applications
    Criado, Juan C.
    Koivunen, Niko
    Raidal, Martti
    Veermae, Hardi
    PHYSICAL REVIEW D, 2020, 102 (12)
  • [50] The hubble rate trouble: an effective field theory of dark matter
    de Jesus, Alvaro S.
    Pinto-Neto, Nelson
    Queiroz, Farinaldo S.
    Silk, Joseph
    Silva, Deivid R. da
    EUROPEAN PHYSICAL JOURNAL C, 2023, 83 (03):