Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

被引:0
|
作者
Mirco Cannoni
机构
[1] Universidad de Huelva,Departamento de Física Aplicada, Facultad de Ciencias Experimentales
来源
关键词
Dark Matter; Dark Matter Particle; Nonrelativistic Limit; Annihilation Cross Section; Majorana Fermion;
D O I
暂无
中图分类号
学科分类号
摘要
We find an exact formula for the thermally averaged cross section times the relative velocity ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}} \rangle $$\end{document} with relativistic Maxwell–Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x=m/T≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=m/T\gg 1$$\end{document} directly gives the nonrelativistic limit of ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}}\rangle $$\end{document}, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (s)$$\end{document} in powers of the nonrelativistic relative velocity vr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_r$$\end{document}. We show the correct invariant procedure that gives the nonrelativistic average ⟨σnrvr⟩nr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma _\mathrm{{nr}} v_r \rangle _\mathrm{{nr}}$$\end{document} coinciding with the large x expansion of ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}}\rangle $$\end{document} in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative vrel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_\text {rel}$$\end{document}, showing the uselessness of the Møller velocity and further elucidating the conceptual and numerical inconsistencies related with its use.
引用
收藏
相关论文
共 50 条
  • [31] Nonrelativistic effective field theory with a resonance field
    J. B. Habashi
    S. Fleming
    U. van Kolck
    The European Physical Journal A, 2021, 57
  • [32] Nonrelativistic effective field theory with a resonance field
    Habashi, J. B.
    Fleming, S.
    van Kolck, U.
    EUROPEAN PHYSICAL JOURNAL A, 2021, 57 (05):
  • [33] Nonrelativistic effective field theory for axions
    Braaten, Eric
    Mohapatra, Abhishek
    Zhang, Hong
    PHYSICAL REVIEW D, 2016, 94 (07)
  • [34] Spin 3/2 particle as a dark matter candidate: an effective field theory approach
    Ran Ding
    Yi Liao
    Journal of High Energy Physics, 2012
  • [35] Spin 3/2 particle as a dark matter candidate: an effective field theory approach
    Ding, Ran
    Liao, Yi
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [36] Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach
    Chen, Jing-Yuan
    Kolb, Edward W.
    Wang, Lian-Tao
    PHYSICS OF THE DARK UNIVERSE, 2013, 2 (04): : 200 - 218
  • [37] New equation of nonrelativistic physics and theory of dark matter
    Musielak, Z. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2021, 36 (03):
  • [38] New nonrelativistic quantum theory of cold dark matter
    Musielak, Z. E.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2022, 37 (22):
  • [39] Effective field theory approach to nuclear matter
    Krewald, S.
    Epelbaum, E.
    Meissner, U. -G.
    Saviankou, P.
    PROGRESS IN PARTICLE AND NUCLEAR PHYSICS, 2012, 67 (02) : 322 - 326
  • [40] Effective field theory approach to nuclear matter
    Saviankou, P.
    Gruemmer, F.
    Epelbaum, E.
    Krewald, S.
    Meissner, Ulf-G.
    PHYSICS OF ATOMIC NUCLEI, 2006, 69 (07) : 1119 - 1123