Relativistic and nonrelativistic annihilation of dark matter: a sanity check using an effective field theory approach

被引:0
|
作者
Mirco Cannoni
机构
[1] Universidad de Huelva,Departamento de Física Aplicada, Facultad de Ciencias Experimentales
来源
关键词
Dark Matter; Dark Matter Particle; Nonrelativistic Limit; Annihilation Cross Section; Majorana Fermion;
D O I
暂无
中图分类号
学科分类号
摘要
We find an exact formula for the thermally averaged cross section times the relative velocity ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}} \rangle $$\end{document} with relativistic Maxwell–Boltzmann statistics. The formula is valid in the effective field theory approach when the masses of the annihilation products can be neglected compared with the dark matter mass and cut-off scale. The expansion at x=m/T≫1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x=m/T\gg 1$$\end{document} directly gives the nonrelativistic limit of ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}}\rangle $$\end{document}, which is usually used to compute the relic abundance for heavy particles that decouple when they are nonrelativistic. We compare this expansion with the one obtained by expanding the total cross section σ(s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma (s)$$\end{document} in powers of the nonrelativistic relative velocity vr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_r$$\end{document}. We show the correct invariant procedure that gives the nonrelativistic average ⟨σnrvr⟩nr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma _\mathrm{{nr}} v_r \rangle _\mathrm{{nr}}$$\end{document} coinciding with the large x expansion of ⟨σvrel⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \sigma v_{\text {rel}}\rangle $$\end{document} in the comoving frame. We explicitly formulate flux, cross section, thermal average, collision integral of the Boltzmann equation in an invariant way using the true relativistic relative vrel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_\text {rel}$$\end{document}, showing the uselessness of the Møller velocity and further elucidating the conceptual and numerical inconsistencies related with its use.
引用
收藏
相关论文
共 50 条
  • [21] Sticky Dark Matter in Effective Field Theory
    Badin, Andriy
    Petrov, Alexey
    19TH PARTICLES AND NUCLEI INTERNATIONAL CONFERENCE (PANIC11), 2012, 1441 : 500 - 502
  • [22] Dipolar dark matter as an effective field theory
    Blanchet, Luc
    Heisenberg, Lavinia
    PHYSICAL REVIEW D, 2017, 96 (08)
  • [23] Relativistic corrections to nonrelativistic effective field theories
    Namjoo, Mohammad Hossein
    Guth, Alan H.
    Kaiser, David, I
    PHYSICAL REVIEW D, 2018, 98 (01)
  • [24] The Higgs -portal for vector dark matter and the effective field theory approach: A reappraisal
    Arcadi, Giorgio
    Djouadi, Abdelhak
    Kado, Marumi
    PHYSICS LETTERS B, 2020, 805
  • [25] Beyond the dark matter effective field theory and a simplified model approach at colliders
    Baek, Seungwon
    Ko, P.
    Park, Myeonghun
    Park, Wan-Il
    Yu, Chaehyun
    PHYSICS LETTERS B, 2016, 756 : 289 - 294
  • [26] Effective field theory of dark matter: a global analysis
    Liem, Sebastian
    Bertone, Gianfranco
    Calore, Francesca
    Ruiz de Austri, Roberto
    Tait, Tim M. P.
    Trotta, Roberto
    Weniger, Christoph
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (09):
  • [27] The effective field theory of dark matter direct detection
    Fitzpatrick, A. Liam
    Haxton, Wick
    Katz, Emanuel
    Lubbers, Nicholas
    Xu, Yiming
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2013, (02):
  • [28] Effective field theory and scalar triplet dark matter
    Carolina Arbeláez
    Marcela González
    Martin Hirsch
    Nicolás A. Neill
    Diego Restrepo
    Journal of High Energy Physics, 2025 (4)
  • [29] Effective field theory of dark matter: a global analysis
    Sebastian Liem
    Gianfranco Bertone
    Francesca Calore
    Roberto Ruiz de Austri
    Tim M. P. Tait
    Roberto Trotta
    Christoph Weniger
    Journal of High Energy Physics, 2016
  • [30] Non-relativistic effective theory of dark matter direct detection
    Fan, Jiji
    Reece, Matthew
    Wang, Lian-Tao
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2010, (11):