Noncommutative potential theory and the sign of the curvature operator in Riemannian geometry

被引:0
|
作者
Fabio Cipriani
Jean-Luc Sauvageot
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] CNRS-Université Pierre et Marie Curie,Institut de Mathématiques
来源
关键词
((no keywords));
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to show that in any complete Riemannian manifold M, without boundary, the curvature operator is nonnegative if and only if the Dirac Laplacian D2 generates a C*-Markovian semigroup (i.e. a strongly continuous, completely positive, contraction semigroup) on the Cliord C*-algebra of Mor, equivalently, if and only if the quadratic form $\mathcal{E}$D of D2 is a C*-Dirichlet form.
引用
收藏
页码:521 / 545
页数:24
相关论文
共 50 条