Noncommutative potential theory and the sign of the curvature operator in Riemannian geometry

被引:0
|
作者
Fabio Cipriani
Jean-Luc Sauvageot
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] CNRS-Université Pierre et Marie Curie,Institut de Mathématiques
来源
关键词
((no keywords));
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this work is to show that in any complete Riemannian manifold M, without boundary, the curvature operator is nonnegative if and only if the Dirac Laplacian D2 generates a C*-Markovian semigroup (i.e. a strongly continuous, completely positive, contraction semigroup) on the Cliord C*-algebra of Mor, equivalently, if and only if the quadratic form $\mathcal{E}$D of D2 is a C*-Dirichlet form.
引用
收藏
页码:521 / 545
页数:24
相关论文
共 50 条
  • [41] TOTAL CURVATURE IN RIEMANNIAN GEOMETRY - WILLMORE,TJ
    CHEN, BY
    AMERICAN SCIENTIST, 1984, 72 (02) : 213 - 213
  • [42] Sub-Riemannian Curvature in Contact Geometry
    Agrachev, Andrei
    Barilari, Davide
    Rizzi, Luca
    JOURNAL OF GEOMETRIC ANALYSIS, 2017, 27 (01) : 366 - 408
  • [43] On geodesic invariance and curvature in nonholonomic Riemannian geometry
    Barrett, Dennis, I
    Remsing, Claudiu C.
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 197 - 213
  • [44] GEOMETRY OF NONCOMMUTATIVE SPECTRAL THEORY
    ALFSEN, EM
    SCHULTZ, FW
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 81 (05) : 893 - 895
  • [45] String theory and noncommutative geometry
    Seiberg, N
    Witten, E
    JOURNAL OF HIGH ENERGY PHYSICS, 1999, (09): : XLII - 92
  • [46] CONNECTIONS AND CURVATURE IN SUB-RIEMANNIAN GEOMETRY
    Hladky, Robert K.
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1107 - 1134
  • [47] Sub-Riemannian Curvature in Contact Geometry
    Andrei Agrachev
    Davide Barilari
    Luca Rizzi
    The Journal of Geometric Analysis, 2017, 27 : 366 - 408
  • [48] Riemannian curvature in the differential geometry of quantum computation
    Brandt, Howard E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2010, 42 (03): : 449 - 453
  • [49] Gauge Theory on Noncommutative Riemannian Principal Bundles
    Branimir Ćaćić
    Bram Mesland
    Communications in Mathematical Physics, 2021, 388 : 107 - 198
  • [50] The scalar potential in noncommutative geometry
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 373 (1-3):