Noncommutative potential theory and the sign of the curvature operator in Riemannian geometry

被引:5
|
作者
Cipriani, F
Sauvageot, JL
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Paris 06, CNRS, Math Inst, F-75252 Paris 05, France
关键词
D O I
10.1007/s00039-003-0421-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this work is to show that in any complete Riemannian manifold M, without boundary, the curvature operator is nonnegative if and only if the Dirac Laplacian D-2 generates a C*-Markovian semigroup (i.e. a strongly continuous, completely positive, contraction semigroup) on the Clifford C*-algebra of M or, equivalently, if and only if the quadratic form epsilon(D) of D-2 is a C*-Dirichlet form.
引用
收藏
页码:521 / 545
页数:25
相关论文
共 50 条