On noncommutative and pseudo-Riemannian geometry

被引:43
|
作者
Strohmaier, A [1 ]
机构
[1] Univ Bonn, Math Inst, D-53115 Bonn, Germany
关键词
pseudo-Riemannian; noncommutative tori; noncommutative geometry;
D O I
10.1016/j.geomphys.2005.01.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a pseudo-Riemannian spectral triple which generalizes the notion of spectral triple and allows for a treatment of pseudo-Riemannian manifolds within a noncommutative setting. It turns out that the relevant spaces in noncommutative pseudo-Riemannian geometry are not Hilbert spaces any more but Krein spaces, and Dirac operators are Krein-selfadjoint. We show that the noncommutative tori can be endowed with a pseudo-Riemannian structure in this way. For the noncommutative tori as well as for pseudo-Riemannian spin manifolds the dimension, the signature of the metric, and the integral of a function can be recovered from the spectral data. (c) 2004 Published by Elsevier B.V.
引用
收藏
页码:175 / 195
页数:21
相关论文
共 50 条
  • [1] Pseudo-Riemannian metrics in models based on noncommutative geometry
    Dimakis, A
    Müller-Hoissen, F
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2000, 50 (01) : 45 - 51
  • [2] Generalized pseudo-Riemannian geometry
    Kunzinger, M
    Steinbauer, R
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (10) : 4179 - 4199
  • [3] TWISTED PRODUCTS IN PSEUDO-RIEMANNIAN GEOMETRY
    PONGE, R
    RECKZIEGEL, H
    [J]. GEOMETRIAE DEDICATA, 1993, 48 (01) : 15 - 25
  • [4] Minimal submanifolds in pseudo-Riemannian geometry
    Pintea, Cornel
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (04): : 178 - 179
  • [5] On pseudo-Riemannian quartics in Finsler geometry
    Itin, Yakov
    [J]. PHYSICA SCRIPTA, 2023, 98 (12)
  • [6] Connes duality in pseudo-Riemannian geometry
    Parfionov, GN
    Zapatrin, RR
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (10) : 7122 - 7128
  • [7] On the geometry of metallic pseudo-Riemannian structures
    Blaga, Adara M.
    Nannicini, Antonella
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2020, 11 (01): : 69 - 87
  • [8] Noncommutative minimal embeddings and morphisms of pseudo-Riemannian calculi
    Arnlind, Joakim
    Norkvist, Axel Tiger
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2021, 159
  • [9] Uniqueness of Curvature Measures in Pseudo-Riemannian Geometry
    Andreas Bernig
    Dmitry Faifman
    Gil Solanes
    [J]. The Journal of Geometric Analysis, 2021, 31 : 11819 - 11848
  • [10] On the geometry of flat pseudo-Riemannian homogeneous spaces
    Wolfgang Globke
    [J]. Israel Journal of Mathematics, 2014, 202 : 255 - 274