A High-Order Temperature-Compensated Subthreshold Voltage Reference Using Channel Length Modulation Compensation Technique

被引:0
|
作者
Arvind Thakur
Rishikesh Pandey
Shireesh Kumar Rai
机构
[1] ECED,
[2] TIET,undefined
来源
关键词
CMOS; High-order; Line sensitivity; Subthreshold; Compensation; Voltage reference;
D O I
暂无
中图分类号
学科分类号
摘要
The paper presents a novel high-order temperature-compensated subthreshold voltage reference that utilizes temperature characteristics of the gate-to-source voltage of subthreshold MOS transistor. The proposed high-order temperature-compensated voltage reference has been designed using two CMOS voltage references and a current subtraction circuit to achieve a low temperature coefficient over a wide temperature range. The proposed circuit offers an output reference voltage of 250.8 mV, line sensitivity of 0.0674%/V and temperature coefficient of 37.4 ppm/°C for the temperature range varying from − 20 ∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{^\circ{\rm C} }$$\end{document} to 140 °C at nominal conditions. The power supply rejection ratio is obtained as − 46.02 dB at a frequency of 100 Hz and − 41.91 dB at a frequency of 1 MHz. The proposed circuit shows an output noise of 1.86 μV/√Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{\mu V}/\surd \mathrm{Hz}$$\end{document} at 100 Hz and 259.72 nV/√Hz\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{nV}/\surd \mathrm{Hz}$$\end{document} at 1 MHz. The proposed circuit has been designed in BSIM3V3 180 nm CMOS technology using Cadence tool. The corner analysis of the proposed circuit has also been performed to show its performance in extreme conditions. The proposed circuit occupies a small chip area of 51 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m × 75.3 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}m.
引用
收藏
页码:263 / 284
页数:21
相关论文
共 50 条
  • [31] A 1.8-V 0.7 ppm/°C high order temperature-compensated CMOS current reference
    Yang Lu
    Bo Zhang
    Analog Integrated Circuits and Signal Processing, 2007, 51 : 175 - 179
  • [32] A Low Temperature Coefficient High Order Compensation Voltage Reference Design
    Zhang, Tao
    Qiu, Yunfei
    Liu, Jin
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51 (06): : 178 - 186
  • [33] A Resistor-Less CMOS Bandgap Reference with High-Order Temperature Compensation
    Chung, Yung-Hui
    Shih, Jia-Fong
    Wang, Yu-Hsiang
    2021 IEEE ASIA PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS (APCCAS 2021) & 2021 IEEE CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2021), 2021, : 1 - 4
  • [34] A-80dB PSRR 1.166 ppm/°C bandgap voltage reference with improved high-order temperature compensation
    Meng, Yifei
    Xiao, Zhiming
    Guo, Yadong
    Zhao, Yue
    Luo, Feng
    IEICE ELECTRONICS EXPRESS, 2023, 20 (16):
  • [35] An Improved Surface Potential-Based High-Order Channel Length Modulation Model
    Huang, Chengxiong
    Wu, Yunqiu
    Cong, Shili
    Yu, Yiming
    Zhao, Chenxi
    Liu, Huihua
    Tang, Hongyan
    Xue, Yuehang
    Kang, Kai
    PROCEEDINGS OF THE 2019 IEEE ASIA-PACIFIC MICROWAVE CONFERENCE (APMC), 2019, : 1283 - 1285
  • [36] A curvature compensation technique for bandgap voltage references using adaptive reference temperature
    Tiew, KC
    Cusey, J
    Geiger, R
    2002 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL IV, PROCEEDINGS, 2002, : 265 - 268
  • [37] A 2.25 ppm/°C High-Order Temperature-Segmented Compensation Bandgap Reference
    Jia, Shichao
    Ye, Tianchun
    Xiao, Shimao
    ELECTRONICS, 2024, 13 (08)
  • [38] A Current-Mirror Technique Used for High-Order Curvature Compensated Bandgap Reference in Automotive Application
    Ha, Dongwoo
    Park, Yujin
    Kim, Suhwan
    2016 IEEE 59TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2016, : 205 - 208
  • [39] A high-accuracy voltage reference with high-order curvature compensation and base-current-canceling techniques
    Chen, Yan
    Wang, Ruoyang
    Wang, Yao
    MODERN PHYSICS LETTERS B, 2024, 38 (06):
  • [40] A high-accuracy voltage reference with high-order curvature compensation and base-current-canceling techniques
    Chen, Yan
    Wang, Ruoyang
    Wang, Yao
    MODERN PHYSICS LETTERS B, 2023,