Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel

被引:0
|
作者
M. Y. Mu
G. Z. Wang
F. Z. Xuan
S. T. Tu
机构
[1] East China University of Science and Technology,Key Laboratory of Pressure Systems and Safety, Ministry of Education
来源
关键词
In-plane constraint; Out-of-plane constraint; Brittle fracture toughness; Equivalent plastic strain; Finite element; Steel;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, the equivalent plastic strain εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} distributions ahead of crack tips for the experimental specimens with combined in-plane and out-of-plane constraints under brittle fracture condition in the literature were calculated by three-dimensional finite element. The constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} based on the areas surrounded by εp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon _{p}$$\end{document} isolines ahead of crack tips has been comparatively analyzed with several constraint parameters (T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T$$\end{document}-stress, A2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{2}$$\end{document}, Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q$$\end{document} and stress triaxiality h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h$$\end{document}) based on the crack-tip stress fields, and the capability of parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for characterizing in-plane and out-of-plane crack-tip constraint effects for brittle fracture has been identified. The results show that the parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} has a good correlation with brittle fracture toughness KJc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}$$\end{document} and Jc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{c}$$\end{document} of various specimens with different constraint levels, and it is a unified measure parameter of in-plane and out-of-plane constraint for brittle fracture. The unified correlation lines and formulae of the normalized brittle fracture toughness KJc/Kref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_{Jc}/K_{ref}$$\end{document} and JIc/Jref\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J_{Ic}/J_{ref}$$\end{document} with Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{A_p}$$\end{document} have been obtained for the steel, and they may be used to determine constraint-dependent or structurally relevant fracture toughness of specimens or cracked components with any constraint levels. The application methodology of the constraint parameter Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document} for structural integrity assessments needs to be further investigated by numerical calculations and experiments.
引用
收藏
页码:87 / 98
页数:11
相关论文
共 50 条
  • [1] Unified parameter of in-plane and out-of-plane constraint effects and its correlation with brittle fracture toughness of steel
    Mu, M. Y.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. T.
    INTERNATIONAL JOURNAL OF FRACTURE, 2014, 190 (1-2) : 87 - 98
  • [2] Unified correlation of in-plane and out-of-plane constraints with fracture toughness
    Yang, J.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. T.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2014, 37 (02) : 132 - 145
  • [3] EFFECTS OF IN-PLANE AND OUT-OF-PLANE CONSTRAINT ON FRACTURE TOUGHNESS IN AUSTENITIC STAINLESS STEEL
    Palmer, Iain
    Mokhtarishirazabad, Mehdi
    Moffat, Andrew
    Mostafavi, Mahmoud
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2019, VOL 6A, 2019,
  • [4] Unified correlation of in-plane and out-of-plane constraints with cleavage fracture toughness
    Mu, M. Y.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. T.
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2015, 80 : 121 - 132
  • [5] Unified Correlation of Wide Range of In-Plane and Out-of-Plane Constraints with Cleavage Fracture Toughness
    Mu, M. Y.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. -T.
    PRESSURE VESSEL TECHNOLOGY: PREPARING FOR THE FUTURE, 2015, 130 : 803 - 819
  • [6] Unified correlation of in-plane and out-of-plane constraint with fracture resistance of a dissimilar metal welded joint
    Yang, J.
    Wang, G. Z.
    Xuan, F. Z.
    Tu, S. T.
    ENGINEERING FRACTURE MECHANICS, 2014, 115 : 296 - 307
  • [7] Out-of-plane Constraint Based Fracture Toughness
    Terfas, Osama A.
    Kriama, Abdulbast M.
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL III, 2013, : 2142 - +
  • [8] Three-dimensional analyses of unified characterization parameter of in-plane and out-of-plane creep constraint
    Ma, H. S.
    Wang, G. Z.
    Liu, S.
    Tu, S. T.
    Xuan, F. Z.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2016, 39 (02) : 251 - 263
  • [9] A micromechanical fracture criterion accounting for in-plane and out-of-plane constraint
    Mostafavi, M.
    Smith, D. J.
    Pavier, M. J.
    COMPUTATIONAL MATERIALS SCIENCE, 2011, 50 (10) : 2759 - 2770
  • [10] Variation of out-of-plane constraint and its effects on fracture
    Xu, Fei
    Li, Yulong
    Guo, Wanlin
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2004, 38 (SUPPL.): : 212 - 216