Lucas sequences and quadratic orders

被引:0
|
作者
Franz Halter-Koch
机构
[1] Karl-Franzens-Universität Graz,Institut für Mathematik und Wissenschaftliches Rechnen
来源
Archiv der Mathematik | 2013年 / 100卷
关键词
Prime Power; Recursion Formula; Class Number; Period Length; Fundamental Unit;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Lucas sequences (Un)n ≥ 0 defined by U0 = 0, U1 = 1, and Un =  PUn–1 – QUn–2 for non-zero integral parameters P, Q such that Δ = P2 – 4Q is not a square. We use the arithmetic of the quadratic order with discriminant Δ to investigate the zeros and the period length of the sequence (Un)n ≥ 0 modulo a positive integer d coprime to Q. For a prime p not dividing Q, we give precise formulas for p-powers, we determine the p-adic value of Un, and we connect the results with class number relations for quadratic orders.
引用
收藏
页码:417 / 430
页数:13
相关论文
共 50 条
  • [1] Lucas sequences and quadratic orders
    Halter-Koch, Franz
    ARCHIV DER MATHEMATIK, 2013, 100 (05) : 417 - 430
  • [2] QUADRATIC RECIPROCITY VIA LUCAS SEQUENCES
    YOUNG, PT
    FIBONACCI QUARTERLY, 1995, 33 (01): : 78 - 81
  • [3] Quadratic forms representing pth terms of Lucas sequences
    Berrizbeitia, Pedro
    Chapman, Robin
    Luca, Florian
    Mendoza, Alberto
    JOURNAL OF NUMBER THEORY, 2017, 175 : 134 - 139
  • [4] The Sequences of Fibonacci and Lucas for Real Quadratic Number Fields
    Lam-Estrada, Pablo
    Maldonado-Ramirez, Myriam Rosalia
    Lopez-Bonilla, Jose Luis
    Zarate, Fausto Jarquin
    Rajendra, R.
    Reddy, P. Siva Kota
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [5] Using Lucas sequences to factor large integers near group orders
    Zhang, ZX
    FIBONACCI QUARTERLY, 2001, 39 (03): : 228 - 237
  • [6] LUCAS QUADRATIC RESIDUE
    PRIMROSE, E
    FIBONACCI QUARTERLY, 1982, 20 (02): : 184 - 184
  • [7] Quadratic birnodules and quadratic orders
    Iyama, O
    JOURNAL OF ALGEBRA, 2005, 286 (02) : 247 - 306
  • [8] ON GENERALIZED LUCAS AND PELL-LUCAS SEQUENCES
    Tasci, Dursun
    Tas, Zisan Kusaksiz
    JOURNAL OF SCIENCE AND ARTS, 2019, (03): : 637 - 646
  • [9] Palindromes in Lucas Sequences
    Florian Luca
    Monatshefte für Mathematik, 2003, 138 : 209 - 223
  • [10] On the discriminator of Lucas sequences
    Faye, Bernadette
    Luca, Florian
    Moree, Pieter
    ANNALES MATHEMATIQUES DU QUEBEC, 2019, 43 (01): : 51 - 71