7-Gons and genus three hyperelliptic curves

被引:0
|
作者
J. William Hoffman
Haohao Wang
机构
[1] Louisiana State University,Department of Mathematics
[2] Southeast Missouri State University,Department of Mathematics
关键词
Curves of genus three; Real multiplication; Abelian variety; Primary 11G10; 11G15; 14H45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will give a general but completely elementary description for hyperelliptic curves of genus three whose Jacobian varieties have endomorphisms by the real cyclotomic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Q}} (\zeta_7 + \overline{\zeta}_7)}$$\end{document}. We study the algebraic correspondences on these curves which are lifts of algebraic correspondences on a conic in P2 associated with Poncelet 7-gons. These correspondences induce endomorphisms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} on the Jacobians which satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi^3+\phi^2-2\phi-1=0}$$\end{document}. Moreover, we study Humbert’s modular equations which characterize the curves of genus three having these real multiplications.
引用
收藏
页码:35 / 52
页数:17
相关论文
共 50 条
  • [41] Generating hyperelliptic curves of genus 2 suitable for cryptography
    Kanayama, N
    Nagao, K
    Uchiyama, S
    6TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL V, PROCEEDINGS: COMPUTER SCI I, 2002, : 151 - 156
  • [42] Index calculus attack for hyperelliptic curves of small genus
    Thériault, N
    ADVANCES IN CRYPTOLOGY - ASIACRYPT 2003, 2003, 2894 : 75 - 92
  • [43] The Chow Ring of the Stack of Hyperelliptic Curves of Odd Genus
    Di Lorenzo, Andrea
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (04) : 2642 - 2681
  • [44] Some Elliptic Subcovers of Genus 3 Hyperelliptic Curves
    Tian, Song
    Yu, Wei
    Li, Bao
    Wang, Kunpeng
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, ISPEC 2015, 2015, 9065 : 181 - 191
  • [45] Point counting on genus 3 non hyperelliptic curves
    Ritzenthaler, C
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2004, 3076 : 379 - 394
  • [46] Hyperelliptic curves of genus 3 with prescribed automorphism group
    Gutierrez, J
    Sevilla, D
    Shaska, T
    COMPUTATIONAL ASPECTS OF ALGEBRAIC CURVES, 2005, 13 : 109 - 123
  • [47] COHOMOLOGICAL INVARIANTS OF THE STACK OF HYPERELLIPTIC CURVES OF ODD GENUS
    Di Lorenzo, A.
    TRANSFORMATION GROUPS, 2021, 26 (01) : 165 - 214
  • [48] Hyperelliptic curves of genus 3 and 4 in characteristic 2
    Demirbas, Y
    Computational Aspects of Algebraic Curves, 2005, 13 : 145 - 162
  • [49] On different expressions for invariants of hyperelliptic curves of genus 3
    Lorenzo Garcia, Elisa
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2022, 74 (02) : 403 - 426
  • [50] THE INTEGRAL CHOW RING OF THE STACK OF HYPERELLIPTIC CURVES OF EVEN GENUS
    Edidin, Dan
    Fulghesu, Damiano
    MATHEMATICAL RESEARCH LETTERS, 2009, 16 (01) : 27 - 40