7-Gons and genus three hyperelliptic curves

被引:0
|
作者
J. William Hoffman
Haohao Wang
机构
[1] Louisiana State University,Department of Mathematics
[2] Southeast Missouri State University,Department of Mathematics
关键词
Curves of genus three; Real multiplication; Abelian variety; Primary 11G10; 11G15; 14H45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will give a general but completely elementary description for hyperelliptic curves of genus three whose Jacobian varieties have endomorphisms by the real cyclotomic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Q}} (\zeta_7 + \overline{\zeta}_7)}$$\end{document}. We study the algebraic correspondences on these curves which are lifts of algebraic correspondences on a conic in P2 associated with Poncelet 7-gons. These correspondences induce endomorphisms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} on the Jacobians which satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi^3+\phi^2-2\phi-1=0}$$\end{document}. Moreover, we study Humbert’s modular equations which characterize the curves of genus three having these real multiplications.
引用
收藏
页码:35 / 52
页数:17
相关论文
共 50 条
  • [21] Formulae for Arithmetic on Genus 2 Hyperelliptic Curves
    Tanja Lange
    Applicable Algebra in Engineering, Communication and Computing, 2005, 15 : 295 - 328
  • [22] Cohomological invariants of hyperelliptic curves of even genus
    Pirisi, Roberto
    ALGEBRAIC GEOMETRY, 2017, 4 (04): : 424 - 443
  • [23] Normal forms of hyperelliptic curves of genus 3
    Frey, Gerhard
    Kani, Ernst
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 77 (2-3) : 677 - 712
  • [24] Modular invariants for genus 3 hyperelliptic curves
    Ionica, Sorina
    Kilicer, Pinar
    Lauter, Kristin
    Garcia, Elisa Lorenzo
    Manzateanu, Adelina
    Massierer, Maike
    Vincent, Christelle
    RESEARCH IN NUMBER THEORY, 2019, 5 (01)
  • [25] HYPERELLIPTIC GENUS 4 CURVES ON ABELIAN SURFACES
    Borowka, Pawel
    Sankaran, G. K.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (12) : 5023 - 5034
  • [26] Formulae for arithmetic on genus 2 hyperelliptic curves
    Lange, T
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2005, 15 (05) : 295 - 328
  • [27] ON NORMALIZED DIFFERENTIALS ON HYPERELLIPTIC CURVES OF INFINITE GENUS
    Kappeler, Thomas
    Topalov, Peter
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2017, 105 (02) : 209 - 248
  • [28] ON THE MAXIMALITY OF HYPERELLIPTIC HOWE CURVES OF GENUS 3
    OHASHI, R. Y. O.
    KODAI MATHEMATICAL JOURNAL, 2022, 45 (02) : 282 - 294
  • [29] THE INTEGRAL CHOW RING OF THE STACK OF SMOOTH NON-HYPERELLIPTIC CURVES OF GENUS THREE
    Di Lorenzo, Andrea
    Fulghesu, Damiano
    Vistoli, Angelo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (08) : 5583 - 5622
  • [30] Non-hyperelliptic curves of genus three over finite fields of characteristic two
    Nart, E
    Ritzenthaler, C
    JOURNAL OF NUMBER THEORY, 2006, 116 (02) : 443 - 473