7-Gons and genus three hyperelliptic curves

被引:0
|
作者
J. William Hoffman
Haohao Wang
机构
[1] Louisiana State University,Department of Mathematics
[2] Southeast Missouri State University,Department of Mathematics
关键词
Curves of genus three; Real multiplication; Abelian variety; Primary 11G10; 11G15; 14H45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we will give a general but completely elementary description for hyperelliptic curves of genus three whose Jacobian varieties have endomorphisms by the real cyclotomic field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{Q}} (\zeta_7 + \overline{\zeta}_7)}$$\end{document}. We study the algebraic correspondences on these curves which are lifts of algebraic correspondences on a conic in P2 associated with Poncelet 7-gons. These correspondences induce endomorphisms \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi}$$\end{document} on the Jacobians which satisfy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\phi^3+\phi^2-2\phi-1=0}$$\end{document}. Moreover, we study Humbert’s modular equations which characterize the curves of genus three having these real multiplications.
引用
收藏
页码:35 / 52
页数:17
相关论文
共 50 条
  • [31] Fields of moduli and definition of hyperelliptic curves of odd genus
    Fuertes, Yolanda
    ARCHIV DER MATHEMATIK, 2010, 95 (01) : 15 - 18
  • [32] Implementation of Tate pairing on hyperelliptic curves of genus 2
    Choie, Y
    Lee, E
    INFORMATION SECURITY AND CRYPTOLOGY - ICISC 2003, 2004, 2971 : 97 - 111
  • [33] Hyperelliptic genus 3 curves with involutions and a Prym map
    Borowka, Pawel
    Shatsila, Anatoli
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3080 - 3094
  • [34] On Indifferentiable Hashing into the Jacobian of Hyperelliptic Curves of Genus 2
    Seck, Michel
    Boudjou, Hortense
    Diarra, Nafissatou
    Khlil, Ahmed Youssef Ould Cheikh
    PROGRESS IN CRYPTOLOGY - AFRICACRYPT 2017, 2017, 10239 : 205 - 222
  • [35] COHOMOLOGICAL INVARIANTS OF THE STACK OF HYPERELLIPTIC CURVES OF ODD GENUS
    A. DI LORENZO
    Transformation Groups, 2021, 26 : 165 - 214
  • [36] Faster pairing computation on genus 2 hyperelliptic curves
    Tang, Chunming
    Xu, Maozhi
    Qi, Yanfeng
    INFORMATION PROCESSING LETTERS, 2011, 111 (10) : 494 - 499
  • [37] Fields of moduli and definition of hyperelliptic curves of odd genus
    Yolanda Fuertes
    Archiv der Mathematik, 2010, 95 : 15 - 18
  • [38] Constructing hyperelliptic curves of genus 2 suitable for cryptography
    Weng, A
    MATHEMATICS OF COMPUTATION, 2003, 72 (241) : 435 - 458
  • [39] Non-hyperelliptic modular curves of genus 3
    Gonzalez-Jimenez, Enrique
    Oyono, Roger
    JOURNAL OF NUMBER THEORY, 2010, 130 (04) : 862 - 878
  • [40] Twists of non-hyperelliptic curves of genus 3
    Garcia, Elisa Lorenzo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (06) : 1785 - 1812