Curves of genus three;
Real multiplication;
Abelian variety;
Primary 11G10;
11G15;
14H45;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
In this paper, we will give a general but completely elementary description for hyperelliptic curves of genus three whose Jacobian varieties have endomorphisms by the real cyclotomic field \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb{Q}} (\zeta_7 + \overline{\zeta}_7)}$$\end{document}. We study the algebraic correspondences on these curves which are lifts of algebraic correspondences on a conic in P2 associated with Poncelet 7-gons. These correspondences induce endomorphisms \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi}$$\end{document} on the Jacobians which satisfy \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\phi^3+\phi^2-2\phi-1=0}$$\end{document}. Moreover, we study Humbert’s modular equations which characterize the curves of genus three having these real multiplications.