Spectral properties of a class of unicyclic graphs

被引:0
|
作者
Zhibin Du
机构
[1] Zhaoqing University,School of Mathematics and Statistics
关键词
spectral radius; least eigenvalue; spread; unicyclic graphs; 05C50; 15A42;
D O I
暂无
中图分类号
学科分类号
摘要
The eigenvalues of G are denoted by λ1(G),λ2(G),…,λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G), \lambda_{2}(G), \ldots, \lambda_{n}(G)$\end{document}, where n is the order of G. In particular, λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}(G)$\end{document} is called the spectral radius of G, λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document} is the least eigenvalue of G, and the spread of G is defined to be the difference between λ1(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{1}(G)$\end{document} and λn(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda_{n}(G)$\end{document}. Let U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} be the set of n-vertex unicyclic graphs, each of whose vertices on the unique cycle is of degree at least three. We characterize the graphs with the kth maximum spectral radius among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for k=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=1$\end{document} if n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}, k=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=2$\end{document} if n≥8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge8$\end{document}, and k=3,4,5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k=3,4,5$\end{document} if n≥10\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge10$\end{document}, and the graph with minimum least eigenvalue (maximum spread, respectively) among graphs in U(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{U}(n)$\end{document} for n≥6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$n\ge6$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] Spectral properties of a class of unicyclic graphs
    Du, Zhibin
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [2] The Laplacian Spectral Radius of a Class of Unicyclic Graphs
    Zhang, Haixia
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [3] On the spectral radius of unicyclic graphs
    Yu, AM
    Tian, F
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2004, (51) : 97 - 109
  • [4] The spectral classes of unicyclic graphs
    Boldt, A
    Takane, M
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 133 (1-2) : 39 - 49
  • [5] Spectral radius and extremal graphs for class of unicyclic graph with pendant vertices
    Zhi, Lu
    Xu, Meijin
    Liu, Xiujuan
    Chen, Xiaodong
    Chen, Chen
    Liu, Yan-Jun
    ADVANCES IN MECHANICAL ENGINEERING, 2017, 9 (07)
  • [6] Unicyclic Graphs of Minimal Spectral Radius
    Ling Sheng SHI
    数学学报, 2013, 56 (02) : 293 - 293
  • [7] Unicyclic Graphs of Minimal Spectral Radius
    Ling Sheng SHI
    Acta Mathematica Sinica,English Series, 2013, (02) : 281 - 286
  • [8] Unicyclic graphs of minimal spectral radius
    Shi, Ling Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2013, 29 (02) : 281 - 286
  • [9] Unicyclic graphs of minimal spectral radius
    Ling Sheng Shi
    Acta Mathematica Sinica, English Series, 2013, 29 : 281 - 286
  • [10] On the spectral characterization of some unicyclic graphs
    Liu, Xiaogang
    Wang, Suijie
    Zhang, Yuanping
    Yong, Xuerong
    DISCRETE MATHEMATICS, 2011, 311 (21) : 2317 - 2336