The entropy of Cantor-like measures

被引:0
|
作者
K. E. Hare
K. G. Hare
B. P. M. Morris
W. Shen
机构
[1] University of Waterloo,Dept. of Pure Mathematics
[2] Stanford University,Dept. of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 159卷
关键词
entropy; Cantor measure; Hausdorff dimension; 28A78; 28A80; 28D20;
D O I
暂无
中图分类号
学科分类号
摘要
By a Cantor-like measure we mean the unique self-similar probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document} satisfying μ=∑i=0m-1piμ∘Si-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = \sum^{m-1}_{i=0} p_{i}{\mu} {\circ} S^{-1}_{i}$$\end{document} where Si(x)=xd+id·d-1m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{i}(x) = \frac{x}{d} + \frac{i}{d} \cdot \frac{d-1}{m-1}$$\end{document} for integers 2≤d<m≤2d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \leq d < m \leq 2d - 1$$\end{document} and probabilities pi>0,∑pi=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{i} > 0, {\sum}p_{i} = 1$$\end{document}. In the uniform case (pi=1/mforalli)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p_{i} = 1/m {\rm for all} i)$$\end{document} we show how one can compute the entropy and Hausdorff dimension to arbitrary precision. In the non-uniform case we find bounds on the entropy.
引用
收藏
页码:563 / 588
页数:25
相关论文
共 50 条
  • [31] Transmission Characteristics of Electrons in Graphene Incident on Cantor-like Potential
    Ogawana, Taichi
    Sakaguchi, Hidetsugu
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (01)
  • [32] Self-similarity in a Cantor-like semiconductor quantum well
    Gaggero-Sager, LM
    Pujals, ER
    Sotolongo-Costa, O
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 2000, 220 (01): : 167 - 169
  • [34] Transmission coefficient from generalized Cantor-like potentials and its multifractality
    Ogawana, Taichi
    Sakaguchi, Hidetsugu
    [J]. PHYSICAL REVIEW E, 2018, 97 (01)
  • [35] The role of Billingsley dimensions in computing fractal dimensions on Cantor-like spaces
    Rey, JM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) : 561 - 572
  • [36] Stochastic Wave Equations Defined by Fractal Laplacians on Cantor-Like Sets
    Ehnes, Tim
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (04) : 713 - 755
  • [37] Scaling laws of reflection coefficients of quantum waves at a Cantor-like potential
    Sakaguchi, Hidetsugu
    Ogawana, Taichi
    [J]. PHYSICAL REVIEW E, 2017, 95 (03)
  • [38] Self-similar conductance patterns in graphene Cantor-like structures
    H. García-Cervantes
    L. M. Gaggero-Sager
    D. S. Díaz-Guerrero
    O. Sotolongo-Costa
    I. Rodríguez-Vargas
    [J]. Scientific Reports, 7
  • [39] Self-similar conductance patterns in graphene Cantor-like structures
    Garcia-Cervantes, H.
    Gaggero-Sager, L. M.
    Diaz-Guerrero, D. S.
    Sotolongo-Costa, O.
    Rodriguez-Vargas, I.
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [40] PROPAGATION OF WAVES THROUGH ONE-DIMENSIONAL CANTOR-LIKE FRACTAL MEDIA
    LIU, NH
    FENG, WG
    WU, X
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 23 (02) : 149 - 154