The role of Billingsley dimensions in computing fractal dimensions on Cantor-like spaces

被引:2
|
作者
Rey, JM
机构
[1] UCL, Ctr Nonlinear Dynam & Its Applicat, London WC1E 6BT, England
[2] Univ St Andrews, Math Inst, St Andrews KY16 9AJ, Fife, Scotland
关键词
D O I
10.1090/S0002-9939-99-05166-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a Cantor-like set as a geometric projection of a Bernoulli process. P. Billingsley (1960) and C. Dai and S.J. Taylor (1994) introduced dimension-like indices in the probability space of a stochastic process. Under suitable regularity conditions we find closed formulae linking the Hausdorff, box and packing metric dimensions of the subsets of the Cantor-like set, to the corresponding Billingsley dimensions associated with a suitable Gibbs measure. In particular, these formulae imply that computing dimensions in a number of well-known fractal spaces boils down to computing dimensions in the unit interval endowed with a suitable metric. We use these results to generalize density theorems in Cantor-like spaces. We also give some examples to illustrate the application of our results.
引用
收藏
页码:561 / 572
页数:12
相关论文
共 45 条
  • [1] Assouad dimensions of Moran sets and Cantor-like sets
    Wenwen Li
    Wenxia Li
    Junjie Miao
    Lifeng Xi
    [J]. Frontiers of Mathematics in China, 2016, 11 : 705 - 722
  • [2] Assouad dimensions of Moran sets and Cantor-like sets
    Li, Wenwen
    Li, Wenxia
    Miao, Junjie
    Xi, Lifeng
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 705 - 722
  • [3] Cantor-like fractal photonic crystal waveguides
    Monsoriu, JA
    Zapata-Rodríguez, CJ
    Silvestre, E
    Furlan, WD
    [J]. OPTICS COMMUNICATIONS, 2005, 252 (1-3) : 46 - 51
  • [4] Optical fractal resonances in Cantor-like photonic crystals
    Chen, Xiaoling
    Ni, Hao
    Zhao, Dong
    Wang, Yang
    [J]. APPLIED OPTICS, 2022, 61 (26) : 7786 - 7792
  • [5] Optical properties of fractal Cantor-like multilayer nanostructures
    Sandomirski, KS
    Gaponenko, SV
    Zhukovsky, SV
    Lavrinenko, AV
    [J]. PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES TO NANOMEETING-2001, 2001, : 118 - 121
  • [6] Fractal Stochastic Processes on Thin Cantor-Like Sets
    Golmankhaneh, Alireza Khalili
    Sibatov, Renat Timergalievich
    [J]. MATHEMATICS, 2021, 9 (06)
  • [7] Optical properties of fractal Cantor-like multilayer nanostructures
    Sandomirski, KS
    Gaponenko, SV
    Zhukovsky, SV
    Lavrinenko, AV
    [J]. ICONO 2001: FUNDAMENTAL ASPECTS OF LASER-MATTER INTERACTION AND PHYSICS OF NANOSTRUCTURES, 2002, 4748 : 443 - 448
  • [8] CLASSIFYING CANTOR SETS BY THEIR FRACTAL DIMENSIONS
    Cabrelli, Carlos A.
    Hare, Kathryn E.
    Molter, Ursula M.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (11) : 3965 - 3974
  • [9] Stochastic Wave Equations Defined by Fractal Laplacians on Cantor-Like Sets
    Ehnes, Tim
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (04) : 713 - 755
  • [10] METHODS OF COMPUTING FRACTAL DIMENSIONS
    HUNT, F
    SULLIVAN, F
    [J]. LECTURE NOTES IN MATHEMATICS, 1989, 1394 : 83 - 95