Optical fractal resonances in Cantor-like photonic crystals

被引:2
|
作者
Chen, Xiaoling [1 ,2 ]
Ni, Hao [1 ,2 ]
Zhao, Dong [1 ,2 ]
Wang, Yang [2 ]
机构
[1] Hubei Univ Sci & Technol, Sch Elect & Informat Engn, Xianning 437100, Peoples R China
[2] Hubei Univ Sci & Technol, Opt Electromech & Intelligent Mfg Lab, Xianning 437100, Peoples R China
基金
中国国家自然科学基金;
关键词
THUE-MORSE;
D O I
10.1364/AO.468016
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We theoretically investigate the optical fractal effect in one-dimensional quasiperiodic photonic crystals (PCs). Dielectric multilayers arrayed alternately submit to the Cantor-like sequence rule. The optical fractal phenomenon is induced by modulating the generation number of the dielectric sequence. The optical fractal effect corresponds to a series of resonant modes, and the Cantor-like PCs approve more resonance modes than those in the Cantor PCs with the same order number. The transmission channels of resonances exponentially increase with the increase in the sequence generation number. Furthermore, the central waves of the transmission channels can be regulated by the incident angle flexibly. We expect this paper may pave a new way for the development of wavelength division multiplexers. (c) 2022 Optica Publishing Group
引用
收藏
页码:7786 / 7792
页数:7
相关论文
共 50 条
  • [1] Cantor-like fractal photonic crystal waveguides
    Monsoriu, JA
    Zapata-Rodríguez, CJ
    Silvestre, E
    Furlan, WD
    [J]. OPTICS COMMUNICATIONS, 2005, 252 (1-3) : 46 - 51
  • [2] Optical properties of fractal Cantor-like multilayer nanostructures
    Sandomirski, KS
    Gaponenko, SV
    Zhukovsky, SV
    Lavrinenko, AV
    [J]. PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES TO NANOMEETING-2001, 2001, : 118 - 121
  • [3] Optical properties of fractal Cantor-like multilayer nanostructures
    Sandomirski, KS
    Gaponenko, SV
    Zhukovsky, SV
    Lavrinenko, AV
    [J]. ICONO 2001: FUNDAMENTAL ASPECTS OF LASER-MATTER INTERACTION AND PHYSICS OF NANOSTRUCTURES, 2002, 4748 : 443 - 448
  • [4] Fractal Stochastic Processes on Thin Cantor-Like Sets
    Golmankhaneh, Alireza Khalili
    Sibatov, Renat Timergalievich
    [J]. MATHEMATICS, 2021, 9 (06)
  • [5] Stochastic Wave Equations Defined by Fractal Laplacians on Cantor-Like Sets
    Ehnes, Tim
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2022, 58 (04) : 713 - 755
  • [6] The role of Billingsley dimensions in computing fractal dimensions on Cantor-like spaces
    Rey, JM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (02) : 561 - 572
  • [7] The entropy of Cantor-like measures
    K. E. Hare
    K. G. Hare
    B. P. M. Morris
    W. Shen
    [J]. Acta Mathematica Hungarica, 2019, 159 : 563 - 588
  • [8] A DECOUPLING FOR CANTOR-LIKE SETS
    Demeter, Ciprian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1037 - 1050
  • [9] THE ENTROPY OF CANTOR-LIKE MEASURES
    Hare, K. E.
    Hare, K. G.
    Morris, B. P. M.
    Shen, W.
    [J]. ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 563 - 588
  • [10] PROPAGATION OF WAVES THROUGH ONE-DIMENSIONAL CANTOR-LIKE FRACTAL MEDIA
    LIU, NH
    FENG, WG
    WU, X
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 1995, 23 (02) : 149 - 154