The entropy of Cantor-like measures

被引:0
|
作者
K. E. Hare
K. G. Hare
B. P. M. Morris
W. Shen
机构
[1] University of Waterloo,Dept. of Pure Mathematics
[2] Stanford University,Dept. of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 159卷
关键词
entropy; Cantor measure; Hausdorff dimension; 28A78; 28A80; 28D20;
D O I
暂无
中图分类号
学科分类号
摘要
By a Cantor-like measure we mean the unique self-similar probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document} satisfying μ=∑i=0m-1piμ∘Si-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = \sum^{m-1}_{i=0} p_{i}{\mu} {\circ} S^{-1}_{i}$$\end{document} where Si(x)=xd+id·d-1m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{i}(x) = \frac{x}{d} + \frac{i}{d} \cdot \frac{d-1}{m-1}$$\end{document} for integers 2≤d<m≤2d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \leq d < m \leq 2d - 1$$\end{document} and probabilities pi>0,∑pi=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{i} > 0, {\sum}p_{i} = 1$$\end{document}. In the uniform case (pi=1/mforalli)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p_{i} = 1/m {\rm for all} i)$$\end{document} we show how one can compute the entropy and Hausdorff dimension to arbitrary precision. In the non-uniform case we find bounds on the entropy.
引用
收藏
页码:563 / 588
页数:25
相关论文
共 50 条
  • [1] THE ENTROPY OF CANTOR-LIKE MEASURES
    Hare, K. E.
    Hare, K. G.
    Morris, B. P. M.
    Shen, W.
    [J]. ACTA MATHEMATICA HUNGARICA, 2019, 159 (02) : 563 - 588
  • [2] Quantization dimension of probability measures supported on Cantor-like sets
    Zhu, Sanguo
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 742 - 750
  • [3] A DECOUPLING FOR CANTOR-LIKE SETS
    Demeter, Ciprian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1037 - 1050
  • [4] The structure of a Cantor-like set with overlap
    Dai, MF
    Tian, LX
    [J]. CHAOS SOLITONS & FRACTALS, 2005, 26 (02) : 295 - 301
  • [5] On the permutation complexity of the Cantor-like sequences
    Lu, Xiao-Tao
    Chen, Jin
    Guo, Ying-Jun
    Wen, Zhi-Xiong
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 616 : 100 - 110
  • [6] Eigenvalues and Eigenfunctions in a Cantor-like Potential
    Gaggero-Sager, L. M.
    Pujals, E.
    Diaz-Guerrero, D. S.
    [J]. PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 1181 - +
  • [7] Cantor-like fractal photonic crystal waveguides
    Monsoriu, JA
    Zapata-Rodríguez, CJ
    Silvestre, E
    Furlan, WD
    [J]. OPTICS COMMUNICATIONS, 2005, 252 (1-3) : 46 - 51
  • [8] On the transcendental values of Cantor-like power series
    Kekec, Gulcan
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [9] Electronic States in Mixed Cantor-like Potentials
    Diaz-Guerrero, D. S.
    Montoya, F.
    Gaggero-Sager, L. M.
    [J]. PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 1177 - 1180
  • [10] On the transcendental values of Cantor-like power series
    Gülcan Kekeç
    [J]. Proceedings - Mathematical Sciences, 2022, 132