The entropy of Cantor-like measures

被引:0
|
作者
K. E. Hare
K. G. Hare
B. P. M. Morris
W. Shen
机构
[1] University of Waterloo,Dept. of Pure Mathematics
[2] Stanford University,Dept. of Mathematics
来源
Acta Mathematica Hungarica | 2019年 / 159卷
关键词
entropy; Cantor measure; Hausdorff dimension; 28A78; 28A80; 28D20;
D O I
暂无
中图分类号
学科分类号
摘要
By a Cantor-like measure we mean the unique self-similar probability measure μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu$$\end{document} satisfying μ=∑i=0m-1piμ∘Si-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = \sum^{m-1}_{i=0} p_{i}{\mu} {\circ} S^{-1}_{i}$$\end{document} where Si(x)=xd+id·d-1m-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{i}(x) = \frac{x}{d} + \frac{i}{d} \cdot \frac{d-1}{m-1}$$\end{document} for integers 2≤d<m≤2d-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2 \leq d < m \leq 2d - 1$$\end{document} and probabilities pi>0,∑pi=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_{i} > 0, {\sum}p_{i} = 1$$\end{document}. In the uniform case (pi=1/mforalli)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(p_{i} = 1/m {\rm for all} i)$$\end{document} we show how one can compute the entropy and Hausdorff dimension to arbitrary precision. In the non-uniform case we find bounds on the entropy.
引用
收藏
页码:563 / 588
页数:25
相关论文
共 50 条
  • [21] Optimal Quantization for Uniform Distributions on Cantor-Like Sets
    Wolfgang Kreitmeier
    [J]. Acta Applicandae Mathematicae, 2009, 105 : 339 - 372
  • [22] Optimal Quantization for Uniform Distributions on Cantor-Like Sets
    Kreitmeier, Wolfgang
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2009, 105 (03) : 339 - 372
  • [23] Optical properties of fractal Cantor-like multilayer nanostructures
    Sandomirski, KS
    Gaponenko, SV
    Zhukovsky, SV
    Lavrinenko, AV
    [J]. PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES TO NANOMEETING-2001, 2001, : 118 - 121
  • [24] BADLY APPROXIMABLE NUMBERS AND VECTORS IN CANTOR-LIKE SETS
    Dani, S. G.
    Shah, Hemangi
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (08) : 2575 - 2587
  • [25] Assouad dimensions of Moran sets and Cantor-like sets
    Li, Wenwen
    Li, Wenxia
    Miao, Junjie
    Xi, Lifeng
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 705 - 722
  • [26] Optical properties of fractal Cantor-like multilayer nanostructures
    Sandomirski, KS
    Gaponenko, SV
    Zhukovsky, SV
    Lavrinenko, AV
    [J]. ICONO 2001: FUNDAMENTAL ASPECTS OF LASER-MATTER INTERACTION AND PHYSICS OF NANOSTRUCTURES, 2002, 4748 : 443 - 448
  • [27] Fractal Stochastic Processes on Thin Cantor-Like Sets
    Golmankhaneh, Alireza Khalili
    Sibatov, Renat Timergalievich
    [J]. MATHEMATICS, 2021, 9 (06)
  • [28] A peculiarity of localized mode transfiguration of a Cantor-like chiral multilayer
    Tuz, Vladimir R.
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2009, 11 (12):
  • [29] THRESHOLD LOWERING FOR SUBHARMONIC GENERATION IN CANTOR-LIKE COMPOSITE STRUCTURES
    ALIPPI, A
    SHKERDIN, G
    BETTUCCI, A
    CRACIUN, F
    MOLINARI, E
    PETRI, A
    [J]. PHYSICA A, 1992, 191 (1-4): : 540 - 544
  • [30] Transmission properties of a multilayer filter realized with Cantor-like code
    Bertolotti, M
    Masciulli, P
    Sibilia, C
    [J]. DEVELOPMENTS IN OPTICAL COMPONENT COATINGS, 1996, 2776 : 19 - 26