BADLY APPROXIMABLE NUMBERS AND VECTORS IN CANTOR-LIKE SETS

被引:7
|
作者
Dani, S. G. [1 ]
Shah, Hemangi [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
SCHMIDTS GAME; FRACTALS; ORBITS; ENDOMORPHISMS; SPACES;
D O I
10.1090/S0002-9939-2011-11105-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a large class of Cantor-like sets of R-d, d >= 1, contains uncountably many badly approximable numbers, respectively badly approximable vectors, when d >= 2. An analogous result is also proved for subsets of R-d arising in the study of geodesic flows corresponding to (d+1)-dimensional manifolds of constant negative curvature and finite volume, generalizing the set of badly approximable numbers in R. Furthermore, we describe a condition on sets, which is fulfilled by a large class, ensuring a large intersection with these Cantor-like sets.
引用
收藏
页码:2575 / 2587
页数:13
相关论文
共 50 条
  • [1] Multiplicatively badly approximable numbers and generalised Cantor sets
    Badziahin, Dzmitry
    Velani, Sanju
    [J]. ADVANCES IN MATHEMATICS, 2011, 228 (05) : 2766 - 2796
  • [2] A DECOUPLING FOR CANTOR-LIKE SETS
    Demeter, Ciprian
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (03) : 1037 - 1050
  • [3] On badly approximable vectors
    Akhunzhanov, Renat
    Moshchevitin, Nikolay
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (02) : 1573 - 1602
  • [4] On badly approximable vectors
    Renat Akhunzhanov
    Nikolay Moshchevitin
    [J]. Mathematische Zeitschrift, 2022, 301 : 1573 - 1602
  • [5] ON BADLY APPROXIMABLE NUMBERS
    SCHMIDT, WM
    [J]. MATHEMATIKA, 1965, 12 (23P1) : 10 - &
  • [6] Assouad dimensions of Moran sets and Cantor-like sets
    Wenwen Li
    Wenxia Li
    Junjie Miao
    Lifeng Xi
    [J]. Frontiers of Mathematics in China, 2016, 11 : 705 - 722
  • [7] Assouad dimensions of Moran sets and Cantor-like sets
    Li, Wenwen
    Li, Wenxia
    Miao, Junjie
    Xi, Lifeng
    [J]. FRONTIERS OF MATHEMATICS IN CHINA, 2016, 11 (03) : 705 - 722
  • [8] The Ostrogradsky series and related Cantor-like sets
    Albeverio, Sergio
    Baranovskyi, Oleksandr
    Priltsiovytyi, Mykola
    Torbin, Grygorly
    [J]. ACTA ARITHMETICA, 2007, 130 (03) : 215 - 230
  • [9] ON THE DIMENSION OF DETERMINISTIC AND RANDOM CANTOR-LIKE SETS
    Pesin, Yakov
    Weiss, Howard
    [J]. MATHEMATICAL RESEARCH LETTERS, 1994, 1 (04) : 519 - 529
  • [10] Balls in Constrained Urns and Cantor-Like Sets
    Wirsching, G. J.
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1998, 17 (04): : 979 - 996