BADLY APPROXIMABLE NUMBERS AND VECTORS IN CANTOR-LIKE SETS

被引:7
|
作者
Dani, S. G. [1 ]
Shah, Hemangi [2 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
[2] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
关键词
SCHMIDTS GAME; FRACTALS; ORBITS; ENDOMORPHISMS; SPACES;
D O I
10.1090/S0002-9939-2011-11105-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a large class of Cantor-like sets of R-d, d >= 1, contains uncountably many badly approximable numbers, respectively badly approximable vectors, when d >= 2. An analogous result is also proved for subsets of R-d arising in the study of geodesic flows corresponding to (d+1)-dimensional manifolds of constant negative curvature and finite volume, generalizing the set of badly approximable numbers in R. Furthermore, we describe a condition on sets, which is fulfilled by a large class, ensuring a large intersection with these Cantor-like sets.
引用
收藏
页码:2575 / 2587
页数:13
相关论文
共 50 条
  • [41] Twisted inhomogeneous Diophantine approximation and badly approximable sets
    Harrap, Stephen
    [J]. ACTA ARITHMETICA, 2012, 151 (01) : 55 - 82
  • [42] Eigenvalues and Eigenfunctions in a Cantor-like Potential
    Gaggero-Sager, L. M.
    Pujals, E.
    Diaz-Guerrero, D. S.
    [J]. PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 1181 - +
  • [43] A NOTE ON BADLY APPROXIMABLE AFFINE FORMS AND WINNING SETS
    Moshchevitin, N. G.
    [J]. MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (01) : 129 - 137
  • [44] On the asymptotic behaviour of Sudler products for badly approximable numbers
    Hauke, Manuel
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 531 (01)
  • [45] Badly approximable vectors and fractals defined by conformal dynamical systems
    Das, Tushar
    Fishman, Lior
    Simmons, David
    Urbanski, Mariusz
    [J]. MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 437 - 467
  • [46] Cantor-like fractal photonic crystal waveguides
    Monsoriu, JA
    Zapata-Rodríguez, CJ
    Silvestre, E
    Furlan, WD
    [J]. OPTICS COMMUNICATIONS, 2005, 252 (1-3) : 46 - 51
  • [47] MORE ABOUT CANTOR LIKE SETS IN HYPERBOLIC NUMBERS
    Yafte Tellez-Sanchez, Gamaliel
    Bory-Reyes, Juan
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2017, 25 (05)
  • [48] On the transcendental values of Cantor-like power series
    Kekec, Gulcan
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):
  • [49] Electronic States in Mixed Cantor-like Potentials
    Diaz-Guerrero, D. S.
    Montoya, F.
    Gaggero-Sager, L. M.
    [J]. PIERS 2009 BEIJING: PROGESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM, PROCEEDINGS I AND II, 2009, : 1177 - 1180
  • [50] FULLY INHOMOGENEOUS MULTIPLICATIVE DIOPHANTINE APPROXIMATION OF BADLY APPROXIMABLE NUMBERS
    Chow, Sam
    Zafeiropoulos, Agamemnon
    [J]. MATHEMATIKA, 2021, 67 (03) : 639 - 646