Carleson Measures for Spaces of Dirichlet Type

被引:0
|
作者
Daniel Girela
José Ángel Peláez
机构
[1] Universidad de Málaga,Departamento de Análisis Matemático, Facultad de Ciencias
来源
关键词
Primary 30H05; Secondary 46J15; Carleson measures; Bergman spaces; Dirichlet spaces; multipliers;
D O I
暂无
中图分类号
学科分类号
摘要
If 0  <  p  <  ∞ and α  >   − 1, the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{D}_\alpha ^p $$\end{document} consists of those functions f which are analytic in the unit disc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}$$\end{document} and have the property that f ′ belongs to the weighted Bergman space Aαp. In 1999, Z. Wu obtained a characterization of the Carleson measures for the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_\alpha ^p$$\end{document} for certain values of p and α. In particular, he proved that, for 0  <  p ≤ 2, the Carleson measures for the space \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}_{p - 1}^p$$\end{document} are precisely the classical Carleson measures. Wu also conjectured that this result remains true for 2  <  p  <  ∞. In this paper we prove that this conjecture is false. Indeed, we prove that if 2  <  p  <  ∞, then there exists g analytic in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}$$\end{document} such that the measure μg,p on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{D}$$\end{document} defined by dμg,p (z)  =  (1  −  |z|2)p - 1| g ′ (z)|p dx dy is not a Carleson measure for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{D}_{p - 1}^p$$\end{document} but is a classical Carleson measure. We obtain also some sufficient conditions for multipliers of the spaces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{D}_{p - 1}^p .$$\end{document}
引用
收藏
页码:415 / 427
页数:12
相关论文
共 50 条
  • [41] Pseudo-Carleson Measures for Fock Spaces
    Liu, Yongqing
    Hou, Shengzhao
    TAIWANESE JOURNAL OF MATHEMATICS, 2022, : 1145 - 1162
  • [42] Carleson measures for the area Nevanlinna spaces and applications
    Choe, Boo Rim
    Koo, Hyungwoon
    Smith, Wayne
    JOURNAL D ANALYSE MATHEMATIQUE, 2008, 104 (1): : 207 - 233
  • [43] Carleson Measures for Variable Exponent Bergman Spaces
    Gerardo R. Chacón
    Humberto Rafeiro
    Juan Camilo Vallejo
    Complex Analysis and Operator Theory, 2017, 11 : 1623 - 1638
  • [44] Reverse Carleson Measures on Generalized Fock Spaces
    Guangfu Cao
    Li He
    Yiyuan Zhang
    Acta Mathematica Scientia, 2023, 43 : 655 - 667
  • [45] REVERSE CARLESON MEASURES ON GENERALIZED FOCK SPACES
    Cao, Guangfu
    He, Li
    Zhang, Yiyuan
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 655 - 667
  • [47] Carleson measures for Hardy-Sobolev spaces
    Tchoundja, Edgar
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2008, 53 (11) : 1033 - 1046
  • [48] Carleson measures for the area Nevanlinna spaces and applications
    Boo Rim Choe
    Hyungwoon Koo
    Wayne Smith
    Journal d'Analyse Mathématique, 2008, 104
  • [49] ON TENT SPACES Tp AND GENERALIZED CARLESON MEASURES
    韩永生
    龙瑞麟
    Science China Mathematics, 1985, (12) : 1239 - 1250
  • [50] Carleson Measures for Variable Exponent Bergman Spaces
    Chacon, Gerardo R.
    Rafeiro, Humberto
    Camilo Vallejo, Juan
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (07) : 1623 - 1638